Preparation and Synthesis of ZnO Particles by Precipitation Method at Low Temperature
Keywords:
ZnO particles, low temperature precipitation, XRD, SEM, FTIR, UV
Abstract
Using zinc nitrate as a precursor and NaOH starch as a stabilizing agent, hexagonal zinc oxide (ZnO) particles has been synthesized by precipitation method at low temperature. The scanning electron microscopy (SEM) images show particles of nearly uniform spherical size of around 10 to 20 nm. The infrared spectroscopy (FT-IR) measurement reveals the peak at 500 cm−1, corresponding to the Zn-O bond. Thus the ZnO particles of nanostructure may be confirmed. UV studies reveal that the particles may be of micron size.
References
G.Shan, X.Kong, X.Wang and Y.Liu, The structure and character of CdSe nanocrystals capped ZnO layer for phase transfer from hexane to ethanol solution, Surf. Sci., 582(2005), 61-68.
Y.Xia, P.Yang, Y.Sun, Y.Wu, B.Mayers, B.Gates, Y.Yin, F.Kim and H.Yan, One dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 15(2003), 353-389.
Y.Huang, X.Duan, Y.Cui, L.J.Lauhon, K.H.Kim and C.M.Lieber, Logic gates and computation from assembled nanowire building blocks, Science, 294(2001), 1313-1317.
J.C.Johnson, H.J.Choi, K.P.Knutsen, R.D.Schaller, P.Yang and J.Saykally, Single gallium nitride nanowire lasers, Nature Mat., 1(2002), 106-110.
S.Xu and Z.L.Wang, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res., 4(11)(2011), 1013-1098.
M.H.Huang, S.Mao, H.Feick, H.Q.Yan, Y.Y.Wu, H.Kind, E.Weber, R.Russo and P.D.Yang, Room-temperature ultraviolet nanowire nanolasers, Science, 292(2001), 1897-1899.
K.Govender, D.S.Boyle, P.O’Brien, D.Binks, D.West and D.Coleman, Room temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition, Adv. Mater., 14(2002), 1221-1224.
W.I.Park and G.C.Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Adv. Mater., 16(2004), 87-90.
D.S.Mao, X.Wang, W.Li, X.H.Liu, Q.Li and J.F.Xu, Electron field emission from hydrogen-free amorphous carbon-coated ZnO tip array, J. Vac. Sci. Technol., B20(2002), 278-281.
Y.W.Zhu, H.Z.Zhang, X.C.Sun, S.Q.Feng, J.Xu, Q.Zhao, B.Xiang, R.M.Wang and D.P.Yu, Efficient field emission from ZnO nanoneedle arrays, Appl. Phys. Lett., 83(2003), 144-146.
W.Z.Wang, B.Q.Zeng, J.Yang, B.Poudel, J.Y.Huang, M.J.Naughton and Z.F.Ren, Aligned ultralong ZnO nanobelts and their enhanced field emission, Adv. Mater., 18(2006), 3275-3278.
T.Y.Wei, P.H.Yeh, S.Y.Lu and Z.L.Wang, Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor, J. Am. Chem. Soc., 131(2009), 17690-17695.
P.H.Yeh, Z.Li and Z.L.Wang, Schottky-gated probe-free ZnO nanowire biosensor, Adv. Mater., 21(2009), 4975-4978.
J.Zhou, Y.D.Gu, Y.F.Hu, W.J.Mai, P.H.Yeh, G.Bao, A.K.Sood, D.L.Polla, Z.L.Wang, Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization, Appl. Phys. Lett., 94(2009).
M.Law, L.E.Greene, J.C.Johnson, R.Saykally and P.D.Yang, Nanowire dyesensitized solar cells, Nature Mater., 4(2005), 455-459.
C.Levy-Clement, R.Tena-Zaera, M.A.Ryan, A.Katty and G.Hodes, CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions, Adv. Mater., 17(2005), 1512-1515.
B.Weintraub, Y.G.Wei and Z.L.Wang, Optical fiber/nanowire hybrid structures for efficient three-dimensional dyesensitized solar cells, Angew. Chem. Int. Ed., 48(2009), 8981-8985.
Y.G.Wei, C.Xu, S.Xu, C.Li, W.Z.Wu, Z.L.Wang, Planar waveguide-nanowire integrated three-dimensional dyesensitized solar cells, Nano Lett., 10(2010), 2092-2096.
A.Rabenau, The role of hydrothermal synthesis in preparative chemistry, Angew. Chem. Int. Ed. Engl., 24(1985), 1026- 1040.
J.Huang, N.Matsunaga, K.Shimanoe, N.Yamazoe and T.Kunitake, Nanotubular, SnO2 templated by cellulose fibers: synthesis and gas sensing, Chem. Mater., 17(2005), 3513-3518.
A.Yadav, V.Prasad, A.Kathe, S.Raj, D.Yadav, C.Sundaramoorthy and N.Vigneshwaran, Functional finishing in cotton fabrics using ZnO nanoparticles, Bull. Mater. Sci., 29(2006), 641-645.
N.Izu, N.Murayama, W.Shin, T.Itoh and I.Matsubara, Preparation of SnO2 nanoparticles less than 10 nm in size by precipitation using hydrophilic carbon black powder, Mater. Lett., 62-2(2008), 313-316.
Y.Liu, C.Zheng, W.Wang, C.Yin and G.Wang, Production of SnO2 nanorods by redox reaction, Adv. Mater., 13(2001), 1883-1887.
Y.K.Liu, C.L.Zheng, W.Z.Wang, Y.J.Zhan and G.G.Wang, Production of SnO2 nanorods by redox reaction, J. Cryst. Growth, 233(2001), 8-12.
C.K.Xu, G.D.Xu, Y.K.Liu, X.L.Zhao and G.H.Wang, Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor, Scripta Mater., 46(2002), 789-792.
D.F.Zhang, L.D.Sun, J.L.Yin and C.H.Yan, Low-temperature fabrication of highly crystalline SnO2 nanorods, Adv. Mater., 15(2003), 1022-1025.
Y.Xia, P.Yang, Y.Sun, Y.Wu, B.Mayers, B.Gates, Y.Yin, F.Kim and H.Yan, One dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 15(2003), 353-389.
Y.Huang, X.Duan, Y.Cui, L.J.Lauhon, K.H.Kim and C.M.Lieber, Logic gates and computation from assembled nanowire building blocks, Science, 294(2001), 1313-1317.
J.C.Johnson, H.J.Choi, K.P.Knutsen, R.D.Schaller, P.Yang and J.Saykally, Single gallium nitride nanowire lasers, Nature Mat., 1(2002), 106-110.
S.Xu and Z.L.Wang, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res., 4(11)(2011), 1013-1098.
M.H.Huang, S.Mao, H.Feick, H.Q.Yan, Y.Y.Wu, H.Kind, E.Weber, R.Russo and P.D.Yang, Room-temperature ultraviolet nanowire nanolasers, Science, 292(2001), 1897-1899.
K.Govender, D.S.Boyle, P.O’Brien, D.Binks, D.West and D.Coleman, Room temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition, Adv. Mater., 14(2002), 1221-1224.
W.I.Park and G.C.Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Adv. Mater., 16(2004), 87-90.
D.S.Mao, X.Wang, W.Li, X.H.Liu, Q.Li and J.F.Xu, Electron field emission from hydrogen-free amorphous carbon-coated ZnO tip array, J. Vac. Sci. Technol., B20(2002), 278-281.
Y.W.Zhu, H.Z.Zhang, X.C.Sun, S.Q.Feng, J.Xu, Q.Zhao, B.Xiang, R.M.Wang and D.P.Yu, Efficient field emission from ZnO nanoneedle arrays, Appl. Phys. Lett., 83(2003), 144-146.
W.Z.Wang, B.Q.Zeng, J.Yang, B.Poudel, J.Y.Huang, M.J.Naughton and Z.F.Ren, Aligned ultralong ZnO nanobelts and their enhanced field emission, Adv. Mater., 18(2006), 3275-3278.
T.Y.Wei, P.H.Yeh, S.Y.Lu and Z.L.Wang, Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor, J. Am. Chem. Soc., 131(2009), 17690-17695.
P.H.Yeh, Z.Li and Z.L.Wang, Schottky-gated probe-free ZnO nanowire biosensor, Adv. Mater., 21(2009), 4975-4978.
J.Zhou, Y.D.Gu, Y.F.Hu, W.J.Mai, P.H.Yeh, G.Bao, A.K.Sood, D.L.Polla, Z.L.Wang, Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization, Appl. Phys. Lett., 94(2009).
M.Law, L.E.Greene, J.C.Johnson, R.Saykally and P.D.Yang, Nanowire dyesensitized solar cells, Nature Mater., 4(2005), 455-459.
C.Levy-Clement, R.Tena-Zaera, M.A.Ryan, A.Katty and G.Hodes, CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions, Adv. Mater., 17(2005), 1512-1515.
B.Weintraub, Y.G.Wei and Z.L.Wang, Optical fiber/nanowire hybrid structures for efficient three-dimensional dyesensitized solar cells, Angew. Chem. Int. Ed., 48(2009), 8981-8985.
Y.G.Wei, C.Xu, S.Xu, C.Li, W.Z.Wu, Z.L.Wang, Planar waveguide-nanowire integrated three-dimensional dyesensitized solar cells, Nano Lett., 10(2010), 2092-2096.
A.Rabenau, The role of hydrothermal synthesis in preparative chemistry, Angew. Chem. Int. Ed. Engl., 24(1985), 1026- 1040.
J.Huang, N.Matsunaga, K.Shimanoe, N.Yamazoe and T.Kunitake, Nanotubular, SnO2 templated by cellulose fibers: synthesis and gas sensing, Chem. Mater., 17(2005), 3513-3518.
A.Yadav, V.Prasad, A.Kathe, S.Raj, D.Yadav, C.Sundaramoorthy and N.Vigneshwaran, Functional finishing in cotton fabrics using ZnO nanoparticles, Bull. Mater. Sci., 29(2006), 641-645.
N.Izu, N.Murayama, W.Shin, T.Itoh and I.Matsubara, Preparation of SnO2 nanoparticles less than 10 nm in size by precipitation using hydrophilic carbon black powder, Mater. Lett., 62-2(2008), 313-316.
Y.Liu, C.Zheng, W.Wang, C.Yin and G.Wang, Production of SnO2 nanorods by redox reaction, Adv. Mater., 13(2001), 1883-1887.
Y.K.Liu, C.L.Zheng, W.Z.Wang, Y.J.Zhan and G.G.Wang, Production of SnO2 nanorods by redox reaction, J. Cryst. Growth, 233(2001), 8-12.
C.K.Xu, G.D.Xu, Y.K.Liu, X.L.Zhao and G.H.Wang, Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor, Scripta Mater., 46(2002), 789-792.
D.F.Zhang, L.D.Sun, J.L.Yin and C.H.Yan, Low-temperature fabrication of highly crystalline SnO2 nanorods, Adv. Mater., 15(2003), 1022-1025.
How to Cite
J.Asghar, P.Muzammil, & N.Sathish. (2017). Preparation and Synthesis of ZnO Particles by Precipitation Method at Low Temperature. International Journal of Current Research in Science and Technology, 3(8), 19-25. Retrieved from https://crst.gfer.org/index.php/crst/article/view/95
Issue
Section
Articles