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1. Introduction and Preliminaries

It is observed that a large number of papers are devoted to the study of generalized open like sets of a topological space

containing the class of open sets and possessing properties more or less similar to those of open sets. This paper deals

with the notions of Λµ-sets and (Λ, µ)-closed sets which are defined by utilizing the notions of µ-open and µ-closed sets.

We also introduce and characterize some new low separation axioms. Moreover, we introduce and study the notions of (Λ,

µ)-continuity, (Λ, µ)-irresoluteness, (Λ, µ)-compactness and (Λ, µ)-connectedness.

Definition 1.1 ([3]). Let X be a nonempty set and λ be a collection of subsets of X. Then λ is called a generalized topology

(briefly GT) on X iff φ ∈ λ and G1 ∈ λ for i ∈ I 6= φ implies G =
⋃

i∈I
Gi ∈ λ. We call the pair (X, λ) a generalized

topological space (briefly GTS) on X.

The elements of λ are called λ-open sets and the complements are called λ-closed sets. The generalized closure of a subset S

of X, denoted by cλ(S), is the intersection of λ-closed sets including S. And the interior of S, denoted by iλ(S), is the union

of λ-open sets contained in S.

Definition 1.2 ([1]). Let (X, µ) and (Y, λ) be GTS’s. Then a function f : (X, µ) → (Y, λ) is said to be µ-α-irresolute if

the inverse image of every λ-α-open set in Y is an µ-α-open set in X.

Definition 1.3 ([7]). Let (X, µ) and (Y, λ) be GTS’s. Then a function f : (X, µ) → (Y, λ) is said to be (µ, λ)-open if the

image of each µ-open set in X is an λ-open set in Y.

Definition 1.4 ([8]). Let A be a subset of a GTS (X, µ). A subset Λµ(A) is defined as follows:

Λµ(A) =



















∩{G : G ∈ µ,A ⊆ A} if there exists G ∈ µ and A ⊆ G,

X, otherwise

∗ E-mail: jeyalakshmipitchai@gmail.com

✶

http://ijcrst.in/
jeyalakshmipitchai@gmail.com


(Λ, µ)-Closed Sets and the Related Notions

Lemma 1.5 ([8]). For subsets A, B and Ai(i ∈ I) of a GTS (X, µ), the following properties hold:

(1). A ⊆ Λµ(A);

(2). If A⊆ B, then Λµ(A) ⊆ Λµ(B);

(3). Λµ(Λµ(A)) = Λµ(A);

(4). Λµ(∩{Ai | i ∈ I}) ⊆ ∩{Λµ(Ai) | i ∈ I};

(5). Λµ(∪{Ai| i ∈ I}) = ∪{Λµ(Ai) | i ∈ I}.

Definition 1.6 ([8]). A subset A of a GTS (X, µ) is called a Λµ-set if A = Λµ(A).

Lemma 1.7 ([8]). For subsets A and Ai (i ∈ I) of a GTS (X, µ), the following hold:

(1). Λµ(A) is a Λµ-set.

(2). If A is µ-open, then A is a Λµ-set.

(3). If Ai is a Λµ-set for each i ∈ I, then ∩i∈I Ai is a Λµ-set.

(4). If Ai is a Λµ-set for each i ∈ I, then ∪i∈I Ai is a Λµ-set.

Definition 1.8 ([8]). A subset A of a GTS (X, µ) is called (Λ, µ)-closed if A = T ∩ C, where T is a Λµ-set and C is a

µ-closed set. The complement of a (Λ, µ)-closed set is called a (Λ, µ)-open set. We shall denote the collection of all (Λ,

µ)-open sets (resp. (Λ, µ)-closed sets) in a GTS (X, µ) by Λµ-O(X, µ) (resp. Λµ-C(X, µ)).

Theorem 1.9 ([8]). Let A be (Λ, µ)-closed subset of a GTS (X, µ). Then, we have

(1). A = T ∩ cµ(A), where T is a Λµ-set;

(2). A = Λµ(A) ∩ cµ(A).

Lemma 1.10 ([8]). For a GTS (X, µ),

(1). Every Λµ-set (resp. µ-closed set) is (Λ, µ)-closed;

(2). Λµ-C(X, µ) (resp. Λµ-O(X, µ)) is closed under arbitrary intersection (resp. union).

Definition 1.11 ([5]). A subset A of a GTS (X, µ) is called a generalized µ-closed set (briefly. gµ-closed) if cµ(A) ⊆ U

whenever A ⊆ U and U is µ-open in (X, µ). A subset A is said to be gµ-open if X − A is gµ-closed.

Definition 1.12 ([9]). A GTS (X, µ) is called an µ-R0 space if for each µ-open set U and each x ∈ U, cµ({x}) ⊆ U.

Definition 1.13 ([10]). A GTS (X, µ) is said to be µ-T1 if for any distinct pair of points x and y in X, there is an µ-open

set U in X containing x but not y and an µ-open set V in X containing y but not x.

Definition 1.14 ([8]). Let (X, µ) be a GTS and A ⊆ X. A point x ∈ X is called a (Λ, µ)-cluster point of A if for every (Λ,

µ)-open set U of X containing x we have A ∩ U = φ. The set of all (Λ, µ)-cluster points is called the (Λ, µ)-closure set of

A and is denoted by A(Λ,µ).

Lemma 1.15 ([8]). Let A and B be subsets of a GTS (X, µ). For the (Λ, µ)-closure, the following properties hold.

(1). A ⊆ A(Λ,µ) and (A(Λ,µ))(Λ,µ) = A(Λ,µ).
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(2). A(Λ,µ) = ∩{F : A ⊆ F and F is (Λ, µ)-closed}.

(3). If A ⊆ B, then A(Λ,µ) ⊆ B(Λ,µ).

(4). A is (Λ, µ)-closed if and only if A = A(Λ,µ).

(5). A(Λ,µ) is (Λ, µ)-closed.

Definition 1.16 ([8]).

(1). A subset A of a GTS (X, µ) is called a Λµ-D set if there are two (Λ, µ)-open sets U, V in X such that U 6= X and A

= U − V . Observe that a (Λ, µ)-open set A 6= X is Λµ-D set since A = U and V = φ.

(2). A GTS (X, µ) is Λµ-D0 (resp. Λµ-D1) if for x, y ∈ X such that x 6= y there exists a Λµ-D set of X containing x but

not y or (resp. and) a Λµ-D set containing y but not x.

(3). A GTS (X, µ) is Λµ-D2 if for x, y ∈ X such that x 6= y there exist disjoint Λµ-D sets G1 and G2 such that x ∈ G1 and

y ∈ G2.

Definition 1.17 ([8]). A GTS (X, µ) satisfies (Λ, µ)-property if for any distinct pair of points in X, there is a (Λ, µ)-open

set containing one of the points but not the other.

Remark 1.18 ([7]).

(1). If (X, µ) satisfies (Λ, µ)-property, then (X, µ) is Λµ-D0.

(2). If (X, µ) is Λµ-Di, then (X, µ) is Λµ-Di−1, i = 1, 2.

Theorem 1.19 ([8]). For a GTS (X, µ) the following statements are true.

(1). (X, µ) is Λµ-D0 if and only if it satisfies (Λ, µ)-property.

(2). (X, µ) is Λµ-D1 if and only if it is Λµ-D2.

Definition 1.20 ([4]). A GTS (X, µ) is said to be µ-compact if every µ-open cover of X has a finite µ-open subcover.

2. (Λ, µ)-Closed Sets

Definition 2.1. A GTS (X, µ) is said to be µ-Alexandroff space if every point has a minimal neighbourhood or equivalently,

has a unique minimal base.

Theorem 2.2. For a GTS (X, µ), we put µΛµ = {A: A is a Λµ-set of X}. Then the pair (X, µΛµ) is an µ-Alexandroff

space.

Theorem 2.3. Let Ai (i ∈ I) be a subset of a GTS (X, µ).

(1). If Ai is (Λ, µ)-closed for each i ∈ I, then ∩{Ai | i ∈ I} is (Λ, µ)-closed.

(2). If Ai is (Λ, µ)-open for each i ∈ I, then ∪{Ai| i ∈ I} is (Λ, µ)-open.

Proof.

✸
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(1). Suppose that Ai is (Λ, µ)-closed for each i ∈ I. Then, for each i, there exist a Λµ-set Ti and an µ-closed set Ci such

that Ai= Ti ∩ Ci. We have ∩i∈IAi = ∩i∈I(Ti ∩ Ci) = (∩i∈ITi) ∩ (∩i∈ICi). By Lemma 2.7, ∩i∈ITi is a Λµ-set and

∩i∈ICi is a µ-closed. This shows that ∩i∈IAi is (Λ, µ)-closed.

(2). Let Ai be (Λ, µ)-open for each i ∈ I. Then X − Ai is (Λ, µ)-closed and X − ∪i∈IAi = ∩i∈I(X − Ai). Therefore, by (1)

∪i∈IAi is (Λ, µ)-open.

Definition 2.4. Let A be a subset of a GTS (X, µ). A set ∧∗

µ(A) is defined as follows ∧∗

µ(A) = ∪{B : B . µc, B ⊆ A}.

Definition 2.5. A subset A of a GTS (X, µ) is called a ∧∗

µ-set if A = ∧∗

µ(A). We obtain the following two lemmas which

are similar to Lemma 2.5 and Lemma 2.7.

Lemma 2.6. For subsets A, B and Ai(i ∈ I) of a GTS (X, µ), the following properties hold:

(1). ∧∗

µ(A) ⊆ A.

(2). If A ⊆ B, then ∧∗

µ(A) ⊆ ∧∗

µ(B).

(3). If A is µ-closed, then ∧∗

µ(A) = A.

(4). ∧∗

µ(∩{Ai : i ∈ I}) = ∩{∧∗

µ(Ai) : i ∈ I}.

(5). ∪{∧∗

µ(Ai) : i ∈ I} ⊆ ∧∗

µ(∪{Ai : i ∈ I}).

(6). Λµ(X − A) = X − ∧∗

µ(A) and ∧∗

µ(X − A) = X − Λµ(A).

Lemma 2.7. For subsets A, B and Ai(i ∈ I) of a GTS (X, µ), the following properties hold:

(1). ∧∗

µ(A) is a ∧∗

µ-set.

(2). If A is µ-closed, then A is a ∧∗

µ-set.

(3). If Ai is a ∧∗

µ-set for each i ∈ I, then ∪{Ai : i ∈ I} and ∩{Ai : i ∈ I} are ∧∗

µ-sets.

The following two lemmas are obtained easily from the definitions.

Lemma 2.8. For a subset A of a GTS (X, µ), the following properties hold:

(1). A is gµ-closed if and only if cµ(A) ⊆ Λµ(A).

(2). A is µ-closed if and only if A is gµ-closed and (Λ, µ)-closed.

Lemma 2.9. For a subset A of a GTS (X, µ), the following properties hold:

(1). A is gµ-open if and only if ∧∗

µ(A) ⊆ iµ(A).

(2). A is µ-open if and only if A is gµ-open and (Λ, µ)-open.

Theorem 2.10. Let A be a (Λ, µ)-open subset of a GTS (X, µ). Then, we have

(1). A = T ∪ C, where T is a ∧∗

µ-set and C is µ-open;

(2). A = T ∪ iµ(A), where T is a ∧∗

µ-set;

(3). A = ∧∗

µ(A) ∪ iµ(A).
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Proof.

(1). Suppose that A is (Λ, µ)-open. Then X − A is (Λ, µ)-closed and X − A = K ∩ D, where K is a Λµ-set and D is a

µ-closed set. Hence, we have A = (X − K) ∪ (X − D), where X − K is a ∧∗

µ-set and X − D is µ-open set.

(2). Since A is an (Λ, µ)-open we have A = T ∪ C, where T is an ∧∗

µ-set and C is µ-open. Also C ⊆ A and C is µ-open, C

⊆ iµ(A) and hence A = T ∪ C ⊆ T ∪ iµ(A) ⊆ A. Therefore, we obtain A = T ∪ iµ(A).

(3). Since A is an (Λ, µ)-open we have A = T ∪ iµ(A), where T is a ∧∗

µ-set. Also T ⊆ A, we have ∧∗

µ(A) ⊇ ∧∗

µ(T) and

hence A ⊇ ∧∗

µ(A) ∪ iµ(A) ⊇ ∧∗

µ(T) ∪ iµ(A) = T ∪ iµ(A) = A. Therefore, we obtain A = ∧∗

µ(A) ∪ iµ(A).

Theorem 2.11. Let (X, µ) be a µ-R0 space. A singleton {x} is (Λ, µ)-closed if and only if {x} is µ-closed.

Proof. Necessity. Suppose that {x} is (Λ, µ)-closed. Then, by Theorem 2.9, {x} = Λµ({x}) ∩ cµ({x}). For any µ-open

set U containing x, cµ({x}) ⊆ U and hence cµ({x}) ⊆ Λµ({x}). Therefore, we have {x} = Λµ({x}) ∩ cµ({x}) ⊇ cµ({x}).

This shows that {x} is µ-closed.

Sufficiency. Suppose that {x} is µ-closed. Since {x} ⊆ Λµ({x}), we have Λµ({x}) ∩ cµ({x}) = Λµ({x}) ∩ {x} = {x}. This

shows that {x} is (Λ, µ)-closed.

Theorem 2.12. A GTS (X, µ) is µ-T1 if and only if for each x . X, the singleton {x} is a Λµ-set.

Proof. Necessity. Suppose that y ∈ Λµ({x}) for some point y distinct from x. Then y ∈ ∩{Vx | x ∈ Vx and Vx is µ-open}

and hence y ∈ Vx for every µ-open set Vx containing x. This contradicts that (X, µ) is an µ-T1.

Sufficiency. Suppose that {x} is a Λµ-set for each x ∈ X. Let x and y be any distinct points. Then y /∈ Λµ({x}) and there

exists an µ-open set Vx such that x ∈ Vx and y /∈ Vx. Similarly, x /∈ Λµ({y}) and there exists an µ-open set Vy such that

y ∈ Vy and x /∈ Vy. This shows that (X, µ) is µ-T1.

Theorem 2.13. A GTS (X, µ) is µ-T1 if and only if (X, µΛµ) is the discrete space.

Proof. Necessity. Suppose that (X, µ) is µ-T1. Let x be any point of X. By Theorem 3.12, {x} is a Λµ-set and {x} ∈

µΛµ . For any subset A of X, by Lemma 2.7, Λµ(A) ∈ µΛµ . This shows that (X, µΛµ) is discrete.

Sufficiency. For each x ∈ X, {x} ∈ µΛµ and hence {x} is Λµ-set. By Theorem 3.12, (X, µ) is µ-T1.

Theorem 2.14. If a function f : (X, µ) → (Y, λ) is µ-α-irresolute, then f : (X, µΛµ) → (Y, λΛλ) is (µ, λ)-continuous.

Proof. Let V be any Λλ-set of (Y, λ), i.e. V ∈ λΛλ. Then V = Λλ(V) = ∩{W : V ⊆ W and W is λ-α-open in (Y, λ)}.

Since f is λ-α-irresolute, f−1(W) is µ-α-open in (X, µ) for each W. Hence we have f−1(V) = ∩{f−1(W) : f−1(V) ⊆ f−1(W)

and W is λ-α-open in (Y, λ)} ⊇ ∩{U : f−1(V) ⊆ U and U is µ-open in (X, µ)} = Λµ(f
−1(V)). On the other hand, by the

definition f−1(V) ⊆ Λµ(f
−1(V)). Therefore, we obtain f−1(V) = Λµ(f

−1(V)). Hence, f−1(V) ∈ µΛµ and f : (X, µ) → (Y, λ)

is (µ, λ)-continuous.

3. (Λ, µ)-Continuous Functions

Definition 3.1. Let (X, µ) be a GTS, x ∈ X and {xs, s ∈ S} be a net of X. We say that the net {xs, s ∈ S} (Λ, µ)-converges

to x if for each (Λ, µ)-open set U containing x there exists an element s0 ∈ S such that s ≤ s0 implies xs ∈ U.

Lemma 3.2. Let (X, µ) be a GTS and A ⊆ X. A point x ∈ A(Λ,µ) if and only if there exists a net {xs, s ∈ S} of A which

(Λ, µ)-converges to x.

✺
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Definition 3.3. Let (X, µ) be a GTS, F = {Fi : i ∈ I} be a filterbase of X and x ∈ X. We say that the filter base F(Λ,

µ)-converges to x if for each (Λ, µ)-open set U containing x there is a member Fi ∈ F such that Fi ⊆ U.

Definition 3.4. A function f : (X, µ) → (Y, λ) is called (Λ, µ)-continuous if f−1(V) is a (Λ, µ)-open subset of X for every

λ-open subset V of Y.

Theorem 3.5. For a function f : (X, µ) → (Y, λ), the following statements are equivalent:

(1). f is (Λ, µ)-continuous;

(2). For each x ∈ X and for each open set V of Y containing f(x) there exists a (Λ, µ)-open set U of X containing x and

f(U) ⊆ V ;

(3). For each x ∈ X and each filterbase F which (Λ, µ)-converges to x, f(F) converges to f(x).

(4). For each x ∈ X and each net {xs, s ∈ S} in X which (Λ, µ)-converges to x, the net {f(xs), s ∈ S} of Y converges to f(x)

∈ Y.

Definition 3.6. A function f : (X, µ) → (Y, λ) is called (Λ, µ)-irresolute if f−1(V) is a (Λ, µ)-open subset of X for every

(Λ, λ)-open subset V of Y. Now we have the following result with its proof is obvious.

Theorem 3.7. For a function f : (X, µ) → (Y, λ), the following statements are equivalent.

(1). f is (Λ, µ)-irresolute;

(2). f−1(B) is a (Λ, µ)-closed subset of X for every (Λ, λ)-closed subset B of Y;

(3). For each x ∈ X and for each (Λ, λ)-open set V of Y containing f(x) there exists a (Λ, µ)-open set U of X containing x

and f(U) ⊆ V;

(4). f(A(Λ,λ)) ⊆ [f(A)](Λ,λ) for each subset A of X;

(5). [f−1(B)](Λ,λ) ⊆ f−1(B(Λ,λ)) for each subset B of Y;

(6). For each x ∈ X and each filterbase F which (Λ, µ)-converges to x, f(F) (Λ, λ)-converges to f(x);

(7). For each x ∈ X and each net {xs, s ∈ S} in X which (Λ, µ)-converges to x, we have that the net {f(xs), s ∈ S} of Y

(Λ, λ)-converges to f(x) ∈ Y.

Definition 3.8. A function f : (X, µ) → (Y, λ) is called quasi-(Λ, µ)-irresolute if f−1(V) is a (Λ, µ)-open subset of X for

every λ-α-open subset V of Y.

Theorem 3.9. For a function f : (X, µ) → (Y, λ), the following statements are equivalent.

(1). f is quasi-(Λ, µ)-irresolute;

(2). For each x ∈ X and for each λ-open set V of Y containing f(x) there exists a (Λ, µ)-open set U of X containing x and

f(U) ⊆ V;

(3). For each x ∈ X and each filterbase F which (Λ, µ)-converges to x, f(F) λ-converges to f(x) (that is, for each µ-open set

U containing f(x) there is a member Fi ∈ F such that Fi ⊆ U);

(4). For each x ∈ X and each net {xs, s ∈ S} in X which (Λ, µ)-converges to x, the net {f(xs), s ∈ S} of Y λ-converges to

f(x) ∈ Y (i.e. for each µ-open set U containing f(x) there exists an element s0 ∈ S such that s ≥ s0 implies f(xs) ∈ U).

6
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Theorem 3.10. For a function f : (X, µ) → (Y, λ), the following statements are true.

(1). If the function f is (Λ, µ)-irresolute, then the function f is (Λ, µ)-continuous and quasi-(Λ, µ)-irresolute.

(2). If the function f is quasi-(Λ, µ)-irresolute, then the function f is (Λ, µ)-continuous.

(3). If the function f is µ-irresolute, then the function f is quasi-(Λ, µ)-irresolute.

(4). If the function f is µ-continuous, then the function f is (Λ, µ)-continuous.

Example 3.11. Let (X, µ) be a GTS such that X = {a, b, c} with µ = {φ X, {a}, {a, b}, {a, c}}. Also, the family of all

∧∗

µ-sets is {φ, X, {c}, {b}, {b, c}} and the family of all (Λ, µ)-open sets is {φ, X, {a, b}, {a, c}, {b}, {c}, {a}, {b, c}}.

We consider the function f : X → X defined by f(c) = a and f(a) = f(b) = c. We have

(1). f is (Λ, µ)-irresolute, quasi-(Λ, µ)-irresolute and (Λ, µ)-continuous,

(2). f is not µ-irresolute, since if x = c and {a} is the µ-open neighbourhood of f(c) = a in X, then for every µ-open

neighbourhood of c in X we have f(U) * {a}, and

(3). f is not (α, µ)-continuous and the proof is similar to that of (2).

Example 3.12. Let (X, µ) be a GTS such that X = {a, b, c, d} and µ = {φ, X, {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a,

b, d}}. Also, the family of all ∧∗

µ-sets is {φ, X, {c, d}, {a, c, d}, {a, d}, {a, c}, {d}, {c}} and the family of all (Λ, µ)-open

sets is {φ, X, {a, b}, {b}, {c}, {d}, {b, c, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {a, d}, {a, c}, {c, d}}. We

consider the function f : X → X defined as follows: f(a) = d, f(b) = c, f(c) = d and f(d) = a. The following hold.

(1). f is not (Λ, µ)-irresolute at the point a since if {d} is the (Λ, µ)-open neighbourhood of f(a) = d in X, then f(U) * {d}

for every (Λ, µ)-open neighbourhood of a in X and

(2). f is (Λ, µ)-continuous.

4. Λµ-D Sets and Associated Separation Axioms

Definition 4.1. A GTS (X, µ) is called Λµ-T1 if for any distinct pair of points x and y in X, there is a (Λ, µ)-open set U

in X containing x but not y and a (Λ, µ)-open set V in X containing y but not x.

Definition 4.2. A GTS (X, µ) is called Λµ-T2 if for any distinct pair of points x and y in X, there exist (Λ, µ)-open sets

U and V in X containing x and y, respectively, such that U ∩ V = φ.

Definition 4.3. A GTS (X, µ) is called µ-α-R0 if for each µ-α-open set U and each x ∈ U, Cα(x) ⊆ U.

Definition 4.4. A GTS (X, µ) is called sober (µ-α)- R0 if ∩x∈Xcµ({x}) = φ.

Example 4.5. Let (X, µ) be a GTS such that X = {a, b, c} and µ = {φ, X, {a}, {a, b}, {a, c}}. Clearly, the singletons

{a}, {b} and {c} are Λµ-D sets. Now we have

(1). (X, µ) is Λµ-Ti, i = 0, 1, 2,

(2). (X, µ) is Λµ-Di, i = 0, 1, 2, and

(3). (X, µ) is not µ-R0.

✼
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Example 4.6. Let (X, µ) be a GTS such that X = {a, b, c, d} and µ = {φ, X, {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b,

d}}. The singletons {a}, {b}, {c} and {d} are Λµ-D sets. We have

(1). (X, µ) is not µ-Ti, i = 1, 2, but satisfies (Λ, µ)-property,

(2). (X, µ) is Λµ-Ti, i = 1, 2, and

(3). (X, µ) is Λµ-Di, i = 0, 1, 2.

Example 4.7. Let (X, µ) be a GTS such that X = {a, b, c, d} and µ = {φ, X, {a, b}, {a, b, c}, {a, b, d}}. The family of

∧∗

µ-sets is {φ, X, {c, d}, {d}, {c}} and the family of (Λ, µ)-open sets is {φ, X, {a, b, d}, {a, b, c}, {a, b, d}, {a, b}, {c,

d}, {d}, {c}}. So, we have

(1). (X, µ) is not Λµ-Di, i = 0, 1, 2,

(2). (X, µ) is not µ-R0 and µ-R1 and

(3). (X, µ) is sober (µ-α)-R0 (i.e., ∩x∈X cµ({x}) = φ).

Theorem 4.8. A GTS (X, µ) satisfies (Λ, µ)-property if and only if for each pair of distinct points x, y of X, {x}(Λ,µ) 6=

{y}(Λ,µ).

Proof. Sufficiency. Suppose that x, y ∈ X, x 6= y and {x}(Λ,µ) 6= {y}(Λ,µ). Let z be a point of X such that z ∈ {x}(Λ,µ)

but z /∈ {y}(Λ,µ). We claim that x /∈ {y}(Λ,µ). For, if x ∈ {y}(Λ,µ) then {x}(Λ,µ) ⊆ {y}(Λ,µ). This contradicts the fact that z

/∈ {y}(Λ,µ). Consequently x belongs to the (Λ, µ)-open set [{y}(Λ,µ)]c to which y does not belong.

Necessity. Let (X, µ) satisfies (Λ, µ)-property and x, y be any two distinct points of X. There exists a (Λ, µ)-open set G

containing x or y, say x but not y. Then Gc is a (Λ, µ)-closed set which does not contain x but contains y. Since {y}(Λ,µ)

is the smallest (Λ, µ)-closed set containing y (Lemma 2.15(2)), {y}(Λ,µ) ⊆ Gc and so x /∈ {y}(Λ,µ). Therefore {x}(Λ,µ) 6=

{y}(Λ,µ).

Theorem 4.9. A GTS (X, µ) is Λµ-T1 if and only if the singletons are (Λ, µ)-closed sets.

Proof. Suppose (X, µ) is Λµ-T1 and x be any point of X. Let y ∈ {x}c. Then x 6= y and so there exists a (Λ, µ)-open set

Uy such that y ∈ Uy but x /∈ Uy. Consequently y ∈ Uy ⊆ {x}c i.e., {x}c = ∪{Uy | y ∈ {x}c} which is (Λ, µ)-open.

To prove the converse, suppose {p} is (Λ, µ)-closed for every p ∈ X. Let x, y ∈ X with x 6= y. Now x 6= y implies y ∈ {x}c.

Hence {x}c is a (Λ, µ)-open set containing y but not containing x. Similarly {y}c is a (Λ, µ)-open set containing x but not

containing y. This means that X is a Λµ-T1 space.

Theorem 4.10. If f : (X, µ) → (Y, λ) is a (Λ, µ)-irresolute surjective function and E is a Λµ-D set in Y, then the inverse

image of E is a Λµ-D set in X .

Proof. Let E be a Λµ-D set in Y. Then there are (Λ, µ)-open sets U1 and U2 in Y such that S = U1 − U2 and U1 6= Y.

By the (Λ, µ)-irresoluteness of f, f−1(U1) and f−1(U2) are (Λ, µ)-open in X. Since U1 6= Y, we have f−1(U1) 6= X. Hence

f−1(E) = f−1(U1) − f−1(U2) is a Λµ-D set in X.

Theorem 4.11. If (Y, λ) is Λλ-D1 and f : (X, µ) → (Y, λ) is (Λ, µ)-irresolute and bijective, then (X, µ) is Λλ-D1.

Proof. Suppose that Y is a Λλ-D1 space. Let x and y be any pair of distinct points in X. Since f is injective and Y is

Λλ-D1, there exist Λλ-D sets Gx and Gy of Y containing f(x) and f(y) respectively, such that f(y) /∈ Gx and f(x) /∈ Gy. By

Theorem 5.10, f−1(Gx) and f−1(Gy) are Λλ-D sets in X containing x and y respectively. This implies that X is a Λλ-D1

space.
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Theorem 4.12. A GTS (X, µ) is Λµ-D1 if and only if for each pair of distinct points x, y ∈ X, there exists a (Λ, µ)-irresolute

surjective function f : (X, µ) → (Y, λ), where Y is a Λλ-D1 space such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a (Λ, µ)-irresolute, surjective function

f of a space X onto a Λλ-D1 space Y such that f(x) 6= f(y). Therefore, there exist disjoint Λµ-D sets Gx and Gy in Y such

that f(x) ∈ Gx and f(y) ∈ Gy. Since f is (Λ, µ)-irresolute and surjective, by Theorem 5.10, f−1(Gx) and f−1(Gy) are disjoint

Λµ-D sets in X containing x and y, respectively. Hence by Theorem 2.21(2) X is Λµ-D1 space.

5. (Λ, µ)-Compactness and (Λ, µ)-Connectedness

Definition 5.1. A GTS (X, µ) is said to be (Λ, µ)-compact if every cover of X by (Λ, µ)-open sets of (X, µ) has a finite

subcover.

Theorem 5.2. A GTS (X, µ) is (Λ, µ)-compact if and only if for every family {Ai : i ∈ I} of (Λ, µ)-closed sets in X

satisfying ∩{Ai : i ∈ I} = φ, there is a finite subfamily Ai1,...,Ain with ∩{Aik : k = 1, ..., n} = φ.

Theorem 5.3. For a GTS (X, µ), the following properties hold.

(1). If (X, µΛµ) is compact, then (X, µ) is µ-compact.

(2). If (X, µ) is (Λ, µ)-compact, then (X, µ) is µ-compact.

(3). If (X, µ) is (Λ, µ)-compact, then (X, ∧∗

µ) is compact.

Proof.

(1). Let {Vµ : µ ∈ ∇} be any µ-open cover of X. By Lemma 2.7, every µ-open Vµ is a Λµ-set for each µ ∈ ∇. Moreover,

by the compactness of (X, µΛµ) there exists a finite subset ∇0 of ∇ such that X = ∪{Vµ | µ ∈ ∇0}. This shows that

(X, µ) is µ-compact.

(2). Let {Fµ | µ ∈ ∇} be a family of µ-closed sets of (X, µ) such that ∩{Fµ | µ ∈ ∇} = φ. Every µ-closed is (Λ, µ)-closed

for each µ ∈ ∇. By Theorem 6.2, there exists a finite subset ∇0 of ∇ such that ∩{Fµ | µ ∈ ∇0} = φ. It follows from

[[2], Theorem 2.17] that (X, µ) is µ-compact.

(3). Let {Vµ | µ ∈ ∇} be a cover of X by ∧∗

µ-sets of (X, µ). Since Vµ = Vµ ∪ φ and the empty set is µ-open, by Lemma

2.7 each Vµ is (Λ, µ)-open in (X, µ). Since (X, µ) is (Λ, µ)-compact, there exists a finite subset ∇0 of ∇ such that X

= ∪{Vµ | µ ∈ ∇0}. This shows that (X, ∧∗

µ) is compact.

Corollary 5.4. If (X, µ) is (Λ, µ)-compact, then (X, µ ) is compact.

The following example shows that the converse of Corollary 6.4 does not hold.

Example 5.5. Let I be an infinite space and let (X, µ) be a GTS such that X = {a} ∪{ai: i ∈ I} and µ = {φ, X, {a}}.

Clearly, the space (X, µ) is compact but it is not (Λ, µ)-compact.

Theorem 5.6. If f : (X, µ) → (Y, λ) is a (Λ, µ)-irresolute surjection and (X, µ) is a (Λ, µ)-compact space, then (Y, λ)

is (Λ, λ)-compact.

✾
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Proof. Let {Vλ | λ ∈ ∇} be any cover of Y by (Λ, λ)-open sets of (Y, λ). Since f is (Λ, µ)-irresolute, by Theorem 5.8

{f−1(Vµ) | µ ∈ ∇} is a cover of X by (Λ, µ)-open sets of (X, µ). Thus, there exists a finite subset ∇0 of ∇ such that

X = ∪{f−1(Vµ) | µ ∈ ∇0}. Since f is surjective, we obtain Y = f(X) = ∪{Vλ | λ ∈ ∇0}. This shows that (Y, λ) is (Λ,

λ)-compact.

Definition 5.7. A GTS (X, µ) is called (Λ, µ)-connected (resp. µ-α-connected) if X cannot be written as a disjoint union

of two non-empty (Λ, µ)-open (resp. µ-α-open) sets.

The proof of the following theorem is straightforward and therefore is omitted.

Theorem 5.8. Every (Λ, µ)-connected space is µ-α-connected space.

The following example shows that µ-connectedness does not imply (Λ, µ)-connectedness.

Example 5.9. Let (X, µ) be a GTS such that X = {a, b, c} and µ = {φ, X, {a}, {a, b}, {a, c}}. We have

(1). (X, µ) is µ-connected and µ-α-connected, and

(2). (X, µ) is not (Λ, µ)-connected.

Theorem 5.10. For a GTS (X, µ), the following statements are equivalent.

(1). (X, µ) is (Λ, µ)-connected;

(2). The only subsets of X, which are both (Λ, µ)-open and (Λ, µ)-closed are the empty set φ and X.

Theorem 5.11. If a GTS (X, µ) is (Λ, µ)-connected, then (X, µΛµ) is connected.

Proof. Suppose that (X, µΛµ) is not connected. There exist nonempty Λµ-sets G, H of (X, µ) such that G ∩ H = φ and

G ∪ H = X. By Lemma 2.10, G and H are (Λ, µ)-closed sets. This shows that (X, µ) is not (Λ, µ)-connected.

Theorem 5.12. If f : (X, µ) → (Y, λ) is a (Λ, µ)-irresolute surjection and (X, µ) is (Λ, µ)-connected, then (Y, λ) is (Λ,

λ)-connected.

Proof. Suppose that (Y, λ) is not (Λ, λ)-connected. There exist nonempty (Λ, λ)-open sets G, H of Y such that G ∩ H =

φ and G ∪ H = Y. Then we have f−1(G)∩f−1(H ) = φ and f−1(G)∪f−1(H) = X. Moreover, f−1(G) and f−1(H) are nonempty

(Λ, µ)-open sets of (X, µ). This shows that (X, µ) is not (Λ, µ)- connected. Therefore, (Y, λ) is (Λ, λ)-connected.
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