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1. Introduction and Preliminaries

It is observed that a large number of papers are devoted to the study of generalized open like sets of a topological space

containing

the class of open sets and possessing properties more or less similar to those of open sets. This paper deals

with the notions of A,-sets and (A, p)-closed sets which are defined by utilizing the notions of p-open and p-closed sets.

We also introduce and characterize some new low separation axioms. Moreover, we introduce and study the notions of (A,

u)-continuity, (A, p)-irresoluteness, (A, p)-compactness and (A, p)-connectedness.

Definition 1.1 ([3]). Let X be a nonempty set and A be a collection of subsets of X. Then A is called a generalized topology

(briefly GT) on X iff € X and G1 € X fori € I # ¢ implies G = |

w1 Gi € A We call the pair (X, \) a generalized

topological space (briefly GTS) on X.

The elements of \ are called Ad-open sets and the complements are called A-closed sets. The generalized closure of a subset S

of X, denoted by ca(S), is the intersection of A-closed sets including S. And the interior of S, denoted by ix(S), is the union

of A-open sets contained in S.

Definition 1.2 ([1]). Let (X, u) and (Y, X\) be GTS’s. Then a function f: (X, p) — (Y, X) is said to be p-a-irresolute if

the inverse image of every \-a-open set in Y is an p-a-open set in X.

Definition 1.3 ([7]). Let (X, ) and (Y, \) be GTS’s. Then a function f: (X, u) — (Y, A) is said to be (j, X)-open if the

image of each p-open set in X is an A-open set in Y.

Definition 1.4 ([8]). Let A be a subset of a GTS (X, p). A subset A, (A) is defined as follows:

Au(A) =

NG:G e u,AC A} if there exists G € p and ACG,

X, otherwise
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Lemma 1.5 ([8]). For subsets A, B and A;(i € I) of a GTS (X, u), the following properties hold:
(1) AC Au(A);

(2). If AC B, then A, (A) C Ay (B);

(3) MAu(Mu(A)) = Au(A);

(4)- Ap(M{As i€ IY) C N{Au(Ai) | i€ I};

(5). Ay (U{Ai| i€ I}) = U{AL(Ai) | i € T}.

Definition 1.6 ([8]). A subset A of a GTS (X, u) is called a A,-set if A = A, (A).
Lemma 1.7 ([8]). For subsets A and A; (i € I) of a GTS (X, u), the following hold:
(1). Ap(A) is a Ay-set.

(2). If A is p-open, then A is a A, -set.

(3). If A; is a Ay-set for each i € I, then Nicr A; is a Ay -set.

(4). If A; is a Ay-set for each i € I, then Ujer A is a Ay-set.

Definition 1.8 ([8]). A subset A of a GTS (X, p) is called (A, p)-closed if A = T N C, where T is a A,-set and C is a
p-closed set. The complement of a (A, p)-closed set is called a (A, p)-open set. We shall denote the collection of all (A,
w)-open sets (resp. (A, p)-closed sets) in a GTS (X, p) by Ap-O(X, p) (resp. Ap-C(X, p)).

Theorem 1.9 ([8]). Let A be (A, p)-closed subset of a GTS (X, u). Then, we have

(1). A =TnN cu(A), where T is a A, -set;

(2). A =A,(A) N cu(A).

Lemma 1.10 ([8]). For a GTS (X, ),

(1). Bvery A -set (resp. p-closed set) is (A, p)-closed;

(2). Au-C(X, p) (resp. Au-O(X, p)) is closed under arbitrary intersection (resp. union).

Definition 1.11 ([5]). A subset A of a GTS (X, p) is called a generalized p-closed set (briefly. g.-closed) if c,(A) C U

whenever A C U and U is p-open in (X, p). A subset A is said to be g,-open if X — A is g,-closed.
Definition 1.12 ([9]). A GTS (X, p) is called an p-Ro space if for each p-open set U and each z € U, ¢, ({z}) C U.

Definition 1.13 ([10]). A GTS (X, ) is said to be u-Ti if for any distinct pair of points z and y in X, there is an u-open

set U in X containing z but not y and an p-open set V in X containing y but not .

Definition 1.14 ([8]). Let (X, ) be a GTS and A C X. A point x € X is called a (A, p)-cluster point of A if for every (A,
wu)-open set U of X containing x we have A N U = ¢. The set of all (A, p)-cluster points is called the (A, p)-closure set of

A and is denoted by A
Lemma 1.15 ([8]). Let A and B be subsets of a GTS (X, p). For the (A, p)-closure, the following properties hold.

(1). A C AMHW gnd (AN = g(Am),
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(2). AW ={F:AC FandFis (A, p)-closed}.
(3). If A C B, then AW C BAK),

(4). Ais (A, p)-closed if and only if A = AN,
(5). AW s (A, p)-closed.

Definition 1.16 ([8]).

(1). A subset A of a GTS (X, u) is called a A,-D set if there are two (A, p)-open sets U, V in X such that U # X and A
= U — V. Observe that a (A, p)-open set A # X is A,-D set since A = U and V = ¢.

(2). A GTS (X, p) is Au-Do (resp. Au-Di) if for z, y € X such that © # y there exists a A,-D set of X containing = but

not y or (resp. and) a A,-D set containing y but not x.

(3). A GTS (X, ) is Ap-Do if for z, y € X such that x # y there exist disjoint A,-D sets G1 and G2 such that z € G1 and

Yy e Gs.

Definition 1.17 ([8]). A GTS (X, u) satisfies (A, p)-property if for any distinct pair of points in X, there is a (A, p)-open

set containing one of the points but not the other.

Remark 1.18 ([7]).

(1). If (X, p) satisfies (A, p)-property, then (X, p) is Ap-Do.

(2). If (X, p) is Ap-D;, then (X, p) is Ay-Di—1, i = 1, 2.

Theorem 1.19 ([8]). For a GTS (X, u) the following statements are true.
(1). (X, u) is Au-Do if and only if it satisfies (A, p)-property.

(2). (X, ) is Au-D1 if and only if it is Ay-Ds.

Definition 1.20 ([4]). A GTS (X, p) is said to be p-compact if every p-open cover of X has a finite p-open subcover.

2. (A, p)-Closed Sets

Definition 2.1. A GTS (X, u) is said to be p-Alexandroff space if every point has a minimal neighbourhood or equivalently,

has a unique minimal base.

Theorem 2.2. For a GTS (X, ), we put p™* = {A: A is a Au-set of X}. Then the pair (X, p™*) is an p-Alezandroff

space.
Theorem 2.3. Let A; (i € I) be a subset of a GTS (X, ).

(1). If A; is (A, p)-closed for each i € I, then N{A; | i € I} is (A, p)-closed.
(2). If A; is (A, u)-open for each i € I, then U{A;| i € I} is (A, u)-open.

Proof.
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(1). Suppose that A; is (A, p)-closed for each i € I. Then, for each i, there exist a Ay-set T; and an p-closed set C; such
that A;= T; N C;. We have NictAi = ﬁieI(Ti N Cz) = (ﬂie[Ti) N (ﬂie[Ci). By Lemma 2.7, Njcr'T; is a Au—set and

Nic1C; is a p-closed. This shows that N;crA; is (A, p)-closed.

(2). Let A; be (A, p)-open for each i € I. Then X — A; is (A, p)-closed and X — UjerA; = Nicr(X — A;). Therefore, by (1)
UserA; is (A, p)-open. O

Definition 2.4. Let A be a subset of a GTS (X, p). A set A}, (A) is defined as follows N},(A) = U{B : B . p., B C A}.

Definition 2.5. A subset A of a GTS (X, p1) is called a N),-set if A = N}, (A). We obtain the following two lemmas which

are similar to Lemma 2.5 and Lemma 2.7.

Lemma 2.6. For subsets A, B and A; (i € I) of a GTS (X, u), the following properties hold:
(1). N, (A) C A.

(2). If A C B, then Nj,(A) C N, (B).

(8). If A is p-closed, then A}, (A) = A.

(4). N (N{As - i e I}) =n{An,(Ai) - i€ I}.

(5). U{A;(As) - ie I} C AL (U{A: - ie I}).

(6) Ap(X — A) =X =N, (A) and A\, (X — A) = X — A, (A).

Lemma 2.7. For subsets A, B and A;(i € I) of a GTS (X, u), the following properties hold:
(1). N (A) is a A},-set.

(2). If A is p-closed, then A is a A,-set.

(8). If A; is a A}-set for each i € I, then U{A; : i € I} and N{A; : i € I} are \j,-sets.
The following two lemmas are obtained easily from the definitions.

Lemma 2.8. For a subset A of a GTS (X, ), the following properties hold:

(1). A is gu-closed if and only if ¢, (A) C A (A).

(2). A is p-closed if and only if A is gu-closed and (A, p)-closed.

Lemma 2.9. For a subset A of a GTS (X, p), the following properties hold:

(1). Ais gu-open if and only if A, (A) C 4, (A).

(2). A is p-open if and only if A is gu-open and (A, p)-open.

Theorem 2.10. Let A be a (A, p)-open subset of a GTS (X, u). Then, we have

(1). A = TU C, where T is a N},-set and C' is p-open;

(2). A =TU i, (A), where T is a N},-set;

(8). A =N (A) Uiu(A).
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Proof.

(1). Suppose that A is (A, p)-open. Then X — A is (A, p)-closed and X — A = K N D, where K is a Ay-set and D is a

p~closed set. Hence, we have A = (X — K) U (X — D), where X — K is a Aj;-set and X — D is p-open set.

(2). Since A is an (A, p)-open we have A = T U C, where T is an Aj,-set and C is p-open. Also C C A and C is p-open, C
Ci,(A) and hence A =T U C C T Ui,(A) C A. Therefore, we obtain A = T U i, (A).

(3). Since A is an (A, p)-open we have A = T U i, (A), where T is a Aj-set. Also T C A, we have A},(A) D A} (T) and
hence A D Ay (A) Uiu(A) D AL(T) Uiu(A) = T Uiu(A) = A. Therefore, we obtain A = AJ(A) Ui, (A). O

Theorem 2.11. Let (X, p) be a pu-Ro space. A singleton {z} is (A, p)-closed if and only if {z} is p-closed.

Proof. Necessity. Suppose that {x} is (A, u)-closed. Then, by Theorem 2.9, {x} = A,({x}) N c,({x}). For any p-open
set U containing x, ¢, ({x}) C U and hence c,({x}) € A.({x}). Therefore, we have {x} = A,({x}) N c.({x}) 2 c.({x}).
This shows that {x} is p-closed.

Sufficiency. Suppose that {x} is p-closed. Since {x} C A, ({x}), we have A,({x}) N c.({x}) = A.({x}) N {x} = {x}. This
shows that {x} is (A, p)-closed. O

Theorem 2.12. A GTS (X, p) is p-T1 if and only if for each z . X, the singleton {x} is a A,-set.

Proof.  Necessity. Suppose that y € A, ({x}) for some point y distinct from x. Theny € N{V, | x € V, and V is y-open}
and hence y € V, for every p-open set V, containing x. This contradicts that (X, u) is an p-Ti.

Sufficiency. Suppose that {x} is a A,-set for each x € X. Let x and y be any distinct points. Then y ¢ A,({x}) and there
exists an p-open set V, such that x € V, and y ¢ V.. Similarly, x ¢ A,({y}) and there exists an p-open set V, such that
y € Vy and x ¢ V. This shows that (X, p) is u-T1. O

Theorem 2.13. A GTS (X, p) is pu-T1 if and only if (X, p™* ) is the discrete space.

Proof. Necessity. Suppose that (X, p) is u-Ti. Let x be any point of X. By Theorem 3.12, {x} is a A,-set and {x} €
p . For any subset A of X, by Lemma 2.7, A,(A) € p®#. This shows that (X, u™#) is discrete.
Sufficiency. For each x € X, {x} € pu™* and hence {x} is A,-set. By Theorem 3.12, (X, u) is pu-T1. O

Theorem 2.14. If a function f : (X, n) — (Y, \) is p-a-irresolute, then f : (X, p* ) — (Y, M) is (1, \)-continuous.

Proof. Let V be any Ay-set of (Y, A), i.e. V.€ M. Then V = Ay (V) = n{W : V C W and W is A-a-open in (Y, \)}.
Since f is A-a-irresolute, f~*(W) is p-a-open in (X, ) for each W. Hence we have f~(V) = n{f~ (W) : f~1(V) C f1(W)
and W is Ad-a-open in (Y, \)} D n{U : £75(V) C U and U is p-open in (X, u)} = A,(f"*(V)). On the other hand, by the
definition (V) C A, (f"*(V)). Therefore, we obtain f~1(V) = A, (f"*(V)). Hence, f (V) € p** and f: (X, u) — (Y, A)

is (1, A)-continuous. O

3. (A, p)-Continuous Functions

Definition 3.1. Let (X, p) be a GTS, z € X and {zs, s € S} be a net of X. We say that the net {zs, s € S} (A, p)-converges

to z if for each (A, p)-open set U containing x there exists an element so € S such that s < so implies zs € U.

Lemma 3.2. Let (X, u) be a GTS and A C X. A point z € AW if and only if there exists a net {zs, s € S} of A which

(A, p)-converges to z.
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Definition 3.3. Let (X, u) be a GTS, F = {F; : i € I} be a filterbase of X and z € X. We say that the filter base F(A,

u)-converges to x if for each (A, p)-open set U containing x there is a member F; € F such that F; C U.

Definition 3.4. A function f: (X, u) — (Y, \) is called (A, p)-continuous if (V) is a (A, u)-open subset of X for every
A-open subset V of Y.

Theorem 3.5. For a function f: (X, p) — (Y, A), the following statements are equivalent:
(1). fis (A, p)-continuous;

(2). For each x € X and for each open set V of Y containing f(z) there exists a (A, wu)-open set U of X containing z and
fru)yc vy

(3). For each z € X and each filterbase F which (A, u)-converges to z, f(F) converges to f(z).

(4). For each z € X and each net {zs, s € S} in X which (A, p)-converges to z, the net {f(zs), s € S} of Y converges to f(z)
cyY.

Definition 3.6. A function f: (X, u) — (Y, X) is called (A, p)-irresolute if (V) is a (A, u)-open subset of X for every

(A, X\)-open subset V of Y. Now we have the following result with its proof is obvious.
Theorem 3.7. For a function f: (X, p) — (Y, A), the following statements are equivalent.
(1). fis (A, u)-irresolute;

(2). f1(B)is a (A, p)-closed subset of X for every (A, \)-closed subset B of Y;

(3). For each z € X and for each (A, \)-open set V of Y containing f(z) there exists a (A, p)-open set U of X containing x
and f(U) C V;

(4). F(ANN) C [f(A)J™N for each subset A of X;
(5). [fHUB)IDN C =Y BMNY) for each subset B of Y;
(6). For each z € X and each filterbase F which (A, p)-converges to z, f(F) (A, X)-converges to f(z);

(7). For each © € X and each net {zs, s € S} in X which (A, p)-converges to z, we have that the net {f(z;), s € S} of Y
(A, \)-converges to f(z) € Y.

Definition 3.8. A function f: (X, u) — (Y, \) is called quasi-(A, w)-irresolute if f~*(V) is a (A, p)-open subset of X for

every A-a-open subset V of Y.
Theorem 3.9. For a function [ : (X, n) — (Y, A), the following statements are equivalent.
(1). fis quasi-(A, p)-irresolute;

(2). For each © € X and for each A-open set V of Y containing f(z) there exists a (A, p)-open set U of X containing x and
flu)cv;

(3). For each x € X and each filterbase F which (A, u)-converges to z, f(F) A-converges to f(x) (that is, for each p-open set

U containing f(xz) there is a member F; € F such that F; C U);

(4). For each x € X and each net {zs, s € S} in X which (A, p)-converges to z, the net {f(xs), s € S} of Y A-converges to

f(x) € Y (i.e. for each u-open set U containing f(x) there exists an element so € S such that s > so implies f(zs) € U).
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Theorem 3.10. For a function f: (X, n) — (Y, A), the following statements are true.

(1). If the function fis (A, p)-irresolute, then the function fis (A, p)-continuous and quasi-(A, p)-irresolute.
(2). If the function f is quasi-(A, p)-irresolute, then the function fis (A, p)-continuous.

(3). If the function f is p-irresolute, then the function fis quasi-(A, p)-irresolute.

(4). If the function f is u-continuous, then the function fis (A, u)-continuous.

Example 3.11. Let (X, 1) be a GTS such that X = {a, b, c} with up = {¢ X, {a}, {a, b}, {a, c}}. Also, the family of all

Ni-sets is {6, X, {c}, (b}, (b, c}} and the family of all (A, p)-open sets is {6, X, {a, b}, {a ¢}, {0}, {c}, {a}, {br }}.
We consider the function f : X — X defined by f(c) = a and f(a) = f(b) = c. We have

(1). fis (A, p)-irresolute, quasi-(A, p)-irresolute and (A, w)-continuous,

(2). f is not p-irresolute, since if x = ¢ and {a} is the p-open neighbourhood of f(c) = a in X, then for every p-open
neighbourhood of ¢ in X we have f(U) ¢ {a}, and

(3). [is not (o, p)-continuous and the proof is similar to that of (2).

Example 3.12. Let (X, p) be a GTS such that X = {a, b, ¢, d} and p = {¢, X, {b}, {a, b}, {b, ¢}, {b, d}, {a, b, ¢}, {a,
b, d}}. Also, the family of all Aj-sets is {¢, X, {c, d}, {a, ¢, d}, {a, d}, {a, ¢}, {d}, {c}} and the family of all (A, p)-open

sets is {¢, X, {a, b}, {b}, {c}, {d}, {b, ¢, d}, {b, ¢}, {b, d}, {a, b, ¢}, {a, b, d}, {a, ¢, d}, {a, d}, {a, ¢}, {c, d}}. We
consider the function f : X — X defined as follows: f(a) = d, f(b) = ¢, f(c) = d and f(d) = a. The following hold.

(1). fis not (A, p)-irresolute at the point a since if {d} is the (A, p1)-open neighbourhood of f(a) = d in X, then f(U) € {d}

for every (A, w)-open neighbourhood of a in X and

(2). fis (A, p)-continuous.

4. A,-D Sets and Associated Separation Axioms

Definition 4.1. A GTS (X, u) is called A,-Th if for any distinct pair of points © and y in X, there is a (A, p)-open set U

in X containing = but not y and a (A, p)-open set V in X containing y but not z.

Definition 4.2. A GTS (X, p) is called Ay,-To if for any distinct pair of points x and y in X, there exist (A, p)-open sets

U and V in X containing x and y, respectively, such that UN V = ¢.
Definition 4.3. A GTS (X, p) is called pu-a-Ro if for each p-a-open set U and each x € U, Cq(z) C U.
Definition 4.4. A GTS (X, p) is called sober (p-a)- Ro if Nzexcu({z}) = ¢.

Example 4.5. Let (X, ) be a GTS such that X = {a, b, ¢} and p = {¢, X, {a}, {a, b}, {a, c}}. Clearly, the singletons
{a}, {b} and {c} are A -D sets. Now we have

(1) (X) :U’) is AN'Tir =201 2
(2). (X, p)is Ay-Ds, i = 0, 1, 2, and

(3). (X, p) is not p-Ro.
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Example 4.6. Let (X, p) be a GTS such that X = {a, b, ¢, d} and p = {¢, X, {b}, {a, b}, {b, ¢}, {b, d}, {a, b, ¢}, {a, b,
d}}. The singletons {a}, {b}, {c} and {d} are A,-D sets. We have

(1). (X, p) is not u-T;, © = 1, 2, but satisfies (A, p)-property,

(2). (X, u)is Ay-Ti, i = 1, 2, and

(3). (X, p) is Au-Di, i = 0, 1, 2.

Example 4.7. Let (X, p) be a GTS such that X = {a, b, ¢, d} and p = {¢, X, {a, b}, {a, b, ¢}, {a, b, d}}. The family of
Np-sets is {¢, X, {c, d}, {d}, {c}} and the family of (A, p)-open sets is {¢, X, {a, b, d}, {a, b, c}, {a, b, d}, {a, b}, {c,
d}, {d}, {c}}. So, we have

(1). (X, p) is not Ay-Di, i =0, 1, 2,

(2). (X, p) is not u-Ro and p-Ri and

(3). (X, u) is sober (u-a)-Ro (i.e., Nzex cu({z}) = ¢).
Theorem 4.8. A GTS (X, p) satisfies (A, p)-property if and only if for each pair of distinct points z, y of X, {z}MH) £
{ypm.

Proof.  Sufficiency. Suppose that x, y € X, x # y and {X}(A’“> #* {y}(A"‘>. Let z be a point of X such that z € {X}(A"‘)
but z ¢ {y}™*). We claim that x ¢ {y}™*). For, if x € {y}** then {x}®#) C {y}*#) This contradicts the fact that z
¢ {y}™". Consequently x belongs to the (A, u)-open set [{y}®*)]¢ to which y does not belong.

Necessity. Let (X, u) satisfies (A, p)-property and x, y be any two distinct points of X. There exists a (A, u)-open set G
containing x or y, say x but not y. Then G€ is a (A, p)-closed set which does not contain x but contains y. Since {y}(A’“)
is the smallest (A, u)-closed set containing y (Lemma 2.15(2)), {y}** C G¢ and so x ¢ {y}™®). Therefore {x}**) £
fypan, 0

Theorem 4.9. A GTS (X, p) is Au-Th if and only if the singletons are (A, p)-closed sets.

Proof.  Suppose (X, u) is A,-T1 and x be any point of X. Let y € {x}°. Then x # y and so there exists a (A, u)-open set
U, such that y € U, but x ¢ U,. Consequently y € U, C {x}° i.e., {x}° = U{Uy | y € {x}°} which is (A, p)-open.

To prove the converse, suppose {p} is (A, u)-closed for every p € X. Let x, y € X with x # y. Now x # y implies y € {x}°.
Hence {x}¢ is a (A, u)-open set containing y but not containing x. Similarly {y} is a (A, p)-open set containing x but not

containing y. This means that X is a A,-T1 space. O

Theorem 4.10. If f: (X, u) — (Y, \) is a (A, p)-irresolute surjective function and E is a A,-D set in Y, then the inverse
image of E is a A,-D set in X .
Proof. Let E be a A,-D set in Y. Then there are (A, p)-open sets U; and Uz in Y such that S = U; — Uz and Uy # Y.

By the (A, p)-irresoluteness of f, f!(U1) and f~'(Us) are (A, u)-open in X. Since Ur # Y, we have f~1(U1) # X. Hence
fY(E) = £ 1(U1) — £1(Us) is a A,-D set in X. O

Theorem 4.11. If (Y, \) is Ax-D1 and f: (X, u) = (Y, A) is (A, p)-irresolute and bijective, then (X, p) is Ax-D1.

Proof. Suppose that Y is a Ax-D; space. Let x and y be any pair of distinct points in X. Since f is injective and Y is
Ax-Dy, there exist Ax-D sets G, and G, of Y containing f(x) and f(y) respectively, such that f(y) ¢ G, and f(x) ¢ G,. By
Theorem 5.10, f'(G,) and f~!(G,) are Ax-D sets in X containing x and y respectively. This implies that X is a Ay-D;

space. O

8
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Theorem 4.12. A GTS (X, p) is Au-D1 if and only if for each pair of distinct points x, y € X, there exists a (A, p)-irresolute

surjective function f: (X, p) — (Y, \), where Y is a Ax-D1 space such that f(z) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a (A, p)-irresolute, surjective function
f of a space X onto a Ax-D1 space Y such that f(x) # f(y). Therefore, there exist disjoint A,-D sets G, and Gy in Y such
that f(x) € G, and f(y) € G,. Since fis (A, p)-irresolute and surjective, by Theorem 5.10, f~*(G,) and f~'(G,) are disjoint

A,-D sets in X containing x and y, respectively. Hence by Theorem 2.21(2) X is A,-D; space. O

5. (A, p)-Compactness and (A, p)-Connectedness

Definition 5.1. A GTS (X, u) is said to be (A, p)-compact if every cover of X by (A, p)-open sets of (X, u) has a finite

subcover.

Theorem 5.2. A GTS (X, p) is (A, p)-compact if and only if for every family {A; : i € I} of (A, p)-closed sets in X

satisfying N{A; : 1 € I} = ¢, there is a finite subfamily A;1,...,Ain with N{Ay : k=1, ..., n} = ¢.
Theorem 5.3. For a GTS (X, u), the following properties hold.

(1). If (X, p™+ ) is compact, then (X, p) is p-compact.

(2). If (X, u) is (A, p)-compact, then (X, p) is p-compact.

(8). If (X, p) is (A, p)-compact, then (X, A},) is compact.

Proof.

(1). Let {V, : p € V} be any p-open cover of X. By Lemma 2.7, every p-open V,, is a A,-set for each p € V. Moreover,
by the compactness of (X, u™#) there exists a finite subset Vo of V such that X = U{V,, | u € Vo}. This shows that

(X, p) is p-compact.

(2). Let {Fy | u € V} be a family of u-closed sets of (X, u) such that N{Fu | u € V} = ¢. Every p-closed is (A, p)-closed
for each p € V. By Theorem 6.2, there exists a finite subset Vo of V such that N{F,, | p € Vo} = ¢. It follows from

[[2], Theorem 2.17] that (X, p) is p-compact.

(3). Let {V, | u € V} be a cover of X by Aj-sets of (X, ). Since V,, =V, U ¢ and the empty set is p-open, by Lemma
2.7 each Vi is (A, p)-open in (X, p). Since (X, u) is (A, p)-compact, there exists a finite subset Vo of V such that X

= U{V, | u € Vo}. This shows that (X, A},) is compact. O
Corollary 5.4. If (X, p) is (A, p)-compact, then (X, p ) is compact.
The following example shows that the converse of Corollary 6.4 does not hold.

Example 5.5. Let I be an infinite space and let (X, p) be a GTS such that X = {a} U{a;: i € I} and p = {¢, X, {a}}.

Clearly, the space (X, 1) is compact but it is not (A, p)-compact.

Theorem 5.6. If f: (X, u) — (Y, X) is a (A, p)-irresolute surjection and (X, p) is a (A, p)-compact space, then (Y, A)

is (A, \)-compact.



(A, p)-Closed Sets and the Related Notions

Proof. Let {Vx | XA € V} be any cover of Y by (A, A)-open sets of (Y, A). Since f is (A, w)-irresolute, by Theorem 5.8
{£7%(V,) | # € V} is a cover of X by (A, p)-open sets of (X, u). Thus, there exists a finite subset Vo of V such that
X = U{f 5 (V) | # € Vo}. Since f is surjective, we obtain Y = f(X) = U{V, | A € Vo}. This shows that (Y, \) is (A,

A)-compact. O

Definition 5.7. A GTS (X, p) is called (A, p)-connected (resp. p-a-connected) if X cannot be written as a disjoint union

of two non-empty (A, p)-open (resp. p-c-open) sets.

The proof of the following theorem is straightforward and therefore is omitted.

Theorem 5.8. Every (A, p)-connected space is p-a-connected space.

The following example shows that u-connectedness does not imply (A, p)-connectedness.

Example 5.9. Let (X, p) be a GTS such that X = {a, b, ¢} and p = {¢, X, {a}, {a, b}, {a, c}}. We have
(1). (X, p) is p-connected and p-a-connected, and

(2). (X, p) is not (A, p)-connected.

Theorem 5.10. For a GTS (X, u), the following statements are equivalent.

(1). (X, pn) is (A, p)-connected;

(2). The only subsets of X, which are both (A, w)-open and (A, u)-closed are the empty set ¢ and X.
Theorem 5.11. If a GTS (X, ) is (A, p)-connected, then (X, u™* ) is connected.

Proof.  Suppose that (X, u*#) is not connected. There exist nonempty A,-sets G, H of (X, ) such that G N H = ¢ and

G U H = X. By Lemma 2.10, G and H are (A, p)-closed sets. This shows that (X, ) is not (A, u)-connected. O

Theorem 5.12. If f: (X, u) = (Y, \) is a (A, p)-irresolute surjection and (X, u) is (A, p)-connected, then (Y, \) is (A,

A)-connected.

Proof. Suppose that (Y, A) is not (A, A\)-connected. There exist nonempty (A, A)-open sets G, H of Y such that G N H =
¢ and G UH =Y. Then we have f*(G)Nf~'(H) = ¢ and f~1(G)uf~(H) = X. Moreover, f1(G) and f~*(H) are nonempty
(A, p)-open sets of (X, u). This shows that (X, u) is not (A, p)- connected. Therefore, (Y, A) is (A, \)-connected. O
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