

International Journal of Current Research in Science and Technology

(Λ, μ) -Closed Sets and the Related Notions

Research Article

P.Jeyalakshmi*

Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

Abstract: We introduce and study the notions of (Λ, μ) -continuity, (Λ, μ) -irresoluteness, (Λ, μ) -compactness and (Λ, μ) -connectedness.

MSC: 54A05.

Keywords: μ -open set, \wedge_{μ}^* -set, g_{μ} -open set Λ_{μ} -set, (Λ, μ) -continuity and quasi- (Λ, μ) -irresolute. © JS Publication.

1. Introduction and Preliminaries

It is observed that a large number of papers are devoted to the study of generalized open like sets of a topological space containing the class of open sets and possessing properties more or less similar to those of open sets. This paper deals with the notions of Λ_{μ} -sets and (Λ, μ) -closed sets which are defined by utilizing the notions of μ -open and μ -closed sets. We also introduce and characterize some new low separation axioms. Moreover, we introduce and study the notions of (Λ, μ) -continuity, (Λ, μ) -irresoluteness, (Λ, μ) -compactness and (Λ, μ) -connectedness.

Definition 1.1 ([3]). Let X be a nonempty set and λ be a collection of subsets of X. Then λ is called a generalized topology (briefly GT) on X iff $\phi \in \lambda$ and $G_1 \in \lambda$ for $i \in I \neq \phi$ implies $G = \bigcup_{i \in I} G_i \in \lambda$. We call the pair (X, λ) a generalized topological space (briefly GTS) on X.

The elements of λ are called λ -open sets and the complements are called λ -closed sets. The generalized closure of a subset S of X, denoted by $c_{\lambda}(S)$, is the intersection of λ -closed sets including S. And the interior of S, denoted by $i_{\lambda}(S)$, is the union of λ -open sets contained in S.

Definition 1.2 ([1]). Let (X, μ) and (Y, λ) be GTS's. Then a function $f: (X, \mu) \to (Y, \lambda)$ is said to be μ - α -irresolute if the inverse image of every λ - α -open set in Y is an μ - α -open set in X.

Definition 1.3 ([7]). Let (X, μ) and (Y, λ) be GTS's. Then a function $f: (X, \mu) \to (Y, \lambda)$ is said to be (μ, λ) -open if the image of each μ -open set in X is an λ -open set in Y.

Definition 1.4 ([8]). Let A be a subset of a GTS (X, μ) . A subset $\Lambda_{\mu}(A)$ is defined as follows:

$$\Lambda_{\mu}(A) = \begin{cases} \cap \{G : G \in \mu, A \subseteq A\} & \text{if there exists} \quad G \in \mu \quad and \quad A \subseteq G \\ \\ X, \quad otherwise \end{cases}$$

E-mail: jeyalakshmipitchai@gmail.com

Lemma 1.5 ([8]). For subsets A, B and $A_i (i \in I)$ of a GTS (X, μ) , the following properties hold:

- (1). $A \subseteq \Lambda_{\mu}(A);$
- (2). If $A \subseteq B$, then $\Lambda_{\mu}(A) \subseteq \Lambda_{\mu}(B)$;
- (3). $\Lambda_{\mu}(\Lambda_{\mu}(A)) = \Lambda_{\mu}(A);$
- (4). $\Lambda_{\mu}(\cap \{A_i \mid i \in I\}) \subseteq \cap \{\Lambda_{\mu}(A_i) \mid i \in I\};$
- (5). $\Lambda_{\mu}(\cup \{A_i \mid i \in I\}) = \cup \{\Lambda_{\mu}(A_i) \mid i \in I\}.$

Definition 1.6 ([8]). A subset A of a GTS (X, μ) is called a Λ_{μ} -set if $A = \Lambda_{\mu}(A)$.

Lemma 1.7 ([8]). For subsets A and A_i ($i \in I$) of a GTS (X, μ), the following hold:

- (1). $\Lambda_{\mu}(A)$ is a Λ_{μ} -set.
- (2). If A is μ -open, then A is a Λ_{μ} -set.
- (3). If A_i is a Λ_{μ} -set for each $i \in I$, then $\cap_{i \in I} A_i$ is a Λ_{μ} -set.
- (4). If A_i is a Λ_{μ} -set for each $i \in I$, then $\cup_{i \in I} A_i$ is a Λ_{μ} -set.

Definition 1.8 ([8]). A subset A of a GTS (X, μ) is called (Λ, μ) -closed if $A = T \cap C$, where T is a Λ_{μ} -set and C is a μ -closed set. The complement of a (Λ, μ) -closed set is called a (Λ, μ) -open set. We shall denote the collection of all (Λ, μ) -open sets (resp. (Λ, μ) -closed sets) in a GTS (X, μ) by Λ_{μ} -O (X, μ) (resp. Λ_{μ} -C (X, μ)).

Theorem 1.9 ([8]). Let A be (Λ, μ) -closed subset of a GTS (X, μ) . Then, we have

- (1). $A = T \cap c_{\mu}(A)$, where T is a Λ_{μ} -set;
- (2). $A = \Lambda_{\mu}(A) \cap c_{\mu}(A)$.

Lemma 1.10 ([8]). For a GTS (X, μ) ,

(1). Every Λ_{μ} -set (resp. μ -closed set) is (Λ, μ) -closed;

(2). Λ_{μ} -C(X, μ) (resp. Λ_{μ} -O(X, μ)) is closed under arbitrary intersection (resp. union).

Definition 1.11 ([5]). A subset A of a GTS (X, μ) is called a generalized μ -closed set (briefly. g_{μ} -closed) if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ -open in (X, μ) . A subset A is said to be g_{μ} -open if X - A is g_{μ} -closed.

Definition 1.12 ([9]). A GTS (X, μ) is called an μ - R_0 space if for each μ -open set U and each $x \in U$, $c_{\mu}(\{x\}) \subseteq U$.

Definition 1.13 ([10]). A GTS (X, μ) is said to be μ - T_1 if for any distinct pair of points x and y in X, there is an μ -open set U in X containing x but not y and an μ -open set V in X containing y but not x.

Definition 1.14 ([8]). Let (X, μ) be a GTS and $A \subseteq X$. A point $x \in X$ is called a (Λ, μ) -cluster point of A if for every (Λ, μ) -open set U of X containing x we have $A \cap U = \phi$. The set of all (Λ, μ) -cluster points is called the (Λ, μ) -closure set of A and is denoted by $A^{(\Lambda,\mu)}$.

Lemma 1.15 ([8]). Let A and B be subsets of a GTS (X, μ) . For the (Λ, μ) -closure, the following properties hold.

(1). $A \subseteq A^{(\Lambda,\mu)}$ and $(A^{(\Lambda,\mu)})^{(\Lambda,\mu)} = A^{(\Lambda,\mu)}$.

- (2). $A^{(\Lambda,\mu)} = \cap \{F : A \subseteq F \text{ and } F \text{ is } (\Lambda, \mu)\text{-closed}\}.$
- (3). If $A \subseteq B$, then $A^{(\Lambda,\mu)} \subseteq B^{(\Lambda,\mu)}$.
- (4). A is (Λ, μ) -closed if and only if $A = A^{(\Lambda, \mu)}$.
- (5). $A^{(\Lambda,\mu)}$ is (Λ, μ) -closed.

Definition 1.16 ([8]).

- (1). A subset A of a GTS (X, μ) is called a Λ_{μ} -D set if there are two (Λ, μ) -open sets U, V in X such that $U \neq X$ and A = U V. Observe that a (Λ, μ) -open set $A \neq X$ is Λ_{μ} -D set since A = U and $V = \phi$.
- (2). A GTS (X, μ) is Λ_{μ} - D_0 (resp. Λ_{μ} - D_1) if for $x, y \in X$ such that $x \neq y$ there exists a Λ_{μ} -D set of X containing x but not y or (resp. and) a Λ_{μ} -D set containing y but not x.
- (3). A GTS (X, μ) is Λ_{μ} -D₂ if for $x, y \in X$ such that $x \neq y$ there exist disjoint Λ_{μ} -D sets G_1 and G_2 such that $x \in G_1$ and $y \in G_2$.

Definition 1.17 ([8]). A GTS (X, μ) satisfies (Λ, μ) -property if for any distinct pair of points in X, there is a (Λ, μ) -open set containing one of the points but not the other.

Remark 1.18 ([7]).

(1). If (X, μ) satisfies (Λ, μ) -property, then (X, μ) is Λ_{μ} -D₀.

(2). If (X, μ) is Λ_{μ} - D_i , then (X, μ) is Λ_{μ} - D_{i-1} , i = 1, 2.

Theorem 1.19 ([8]). For a GTS (X, μ) the following statements are true.

- (1). (X, μ) is Λ_{μ} - D_0 if and only if it satisfies (Λ, μ) -property.
- (2). (X, μ) is Λ_{μ} - D_1 if and only if it is Λ_{μ} - D_2 .

Definition 1.20 ([4]). A GTS (X, μ) is said to be μ -compact if every μ -open cover of X has a finite μ -open subcover.

2. (Λ, μ) -Closed Sets

Definition 2.1. A GTS (X, μ) is said to be μ -Alexandroff space if every point has a minimal neighbourhood or equivalently, has a unique minimal base.

Theorem 2.2. For a GTS (X, μ) , we put $\mu^{\Lambda_{\mu}} = \{A: A \text{ is a } \Lambda_{\mu}\text{-set of } X\}$. Then the pair $(X, \mu^{\Lambda_{\mu}})$ is an μ -Alexandroff space.

Theorem 2.3. Let A_i $(i \in I)$ be a subset of a GTS (X, μ) .

(1). If A_i is (Λ, μ) -closed for each $i \in I$, then $\cap \{A_i \mid i \in I\}$ is (Λ, μ) -closed.

(2). If A_i is (Λ, μ) -open for each $i \in I$, then $\cup \{A_i | i \in I\}$ is (Λ, μ) -open.

Proof.

- (1). Suppose that A_i is (Λ, μ) -closed for each $i \in I$. Then, for each i, there exist a Λ_{μ} -set T_i and an μ -closed set C_i such that $A_i = T_i \cap C_i$. We have $\cap_{i \in I} A_i = \cap_{i \in I} (T_i \cap C_i) = (\cap_{i \in I} T_i) \cap (\cap_{i \in I} C_i)$. By Lemma 2.7, $\cap_{i \in I} T_i$ is a Λ_{μ} -set and $\cap_{i \in I} C_i$ is a μ -closed. This shows that $\cap_{i \in I} A_i$ is (Λ, μ) -closed.
- (2). Let A_i be (Λ, μ) -open for each $i \in I$. Then $X A_i$ is (Λ, μ) -closed and $X \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X A_i)$. Therefore, by (1) $\bigcup_{i \in I} A_i$ is (Λ, μ) -open.

Definition 2.4. Let A be a subset of a GTS (X, μ) . A set $\wedge_{\mu}^{*}(A)$ is defined as follows $\wedge_{\mu}^{*}(A) = \bigcup \{B : B : \mu_{c}, B \subseteq A\}$.

Definition 2.5. A subset A of a GTS (X, μ) is called a \wedge_{μ}^* -set if $A = \wedge_{\mu}^*(A)$. We obtain the following two lemmas which are similar to Lemma 2.5 and Lemma 2.7.

Lemma 2.6. For subsets A, B and A_i ($i \in I$) of a GTS (X, μ), the following properties hold:

- (1). $\wedge^*_{\mu}(A) \subseteq A$.
- (2). If $A \subseteq B$, then $\wedge^*_{\mu}(A) \subseteq \wedge^*_{\mu}(B)$.
- (3). If A is μ -closed, then $\wedge^*_{\mu}(A) = A$.
- (4). $\wedge_{\mu}^{*}(\cap \{A_{i} : i \in I\}) = \cap \{\wedge_{\mu}^{*}(A_{i}) : i \in I\}.$
- $(5). \cup \{\wedge^*_{\mu}(A_i) : i \in I\} \subseteq \wedge^*_{\mu}(\cup \{A_i : i \in I\}).$
- (6). $\Lambda_{\mu}(X A) = X \wedge_{\mu}^{*}(A)$ and $\wedge_{\mu}^{*}(X A) = X \Lambda_{\mu}(A)$.

Lemma 2.7. For subsets A, B and A_i ($i \in I$) of a GTS (X, μ), the following properties hold:

- (1). $\wedge^*_{\mu}(A)$ is a \wedge^*_{μ} -set.
- (2). If A is μ -closed, then A is a \wedge^*_{μ} -set.
- (3). If A_i is a \wedge_{μ}^* -set for each $i \in I$, then $\cup \{A_i : i \in I\}$ and $\cap \{A_i : i \in I\}$ are \wedge_{μ}^* -sets.

The following two lemmas are obtained easily from the definitions.

Lemma 2.8. For a subset A of a GTS (X, μ) , the following properties hold:

- (1). A is g_{μ} -closed if and only if $c_{\mu}(A) \subseteq \Lambda_{\mu}(A)$.
- (2). A is μ -closed if and only if A is g_{μ} -closed and (Λ, μ) -closed.

Lemma 2.9. For a subset A of a GTS (X, μ) , the following properties hold:

- (1). A is g_{μ} -open if and only if $\wedge_{\mu}^{*}(A) \subseteq i_{\mu}(A)$.
- (2). A is μ -open if and only if A is g_{μ} -open and (Λ, μ) -open.

Theorem 2.10. Let A be a (Λ, μ) -open subset of a GTS (X, μ) . Then, we have

- (1). $A = T \cup C$, where T is a \wedge^*_{μ} -set and C is μ -open;
- (2). $A = T \cup i_{\mu}(A)$, where T is a \wedge^*_{μ} -set;

(3). $A = \wedge^*_{\mu}(A) \cup i_{\mu}(A)$.

Proof.

- (1). Suppose that A is (Λ, μ) -open. Then X A is (Λ, μ) -closed and X A = K \cap D, where K is a Λ_{μ} -set and D is a μ -closed set. Hence, we have A = (X K) \cup (X D), where X K is a \wedge_{μ}^{*} -set and X D is μ -open set.
- (2). Since A is an (Λ, μ) -open we have $A = T \cup C$, where T is an \wedge_{μ}^* -set and C is μ -open. Also $C \subseteq A$ and C is μ -open, C $\subseteq i_{\mu}(A)$ and hence $A = T \cup C \subseteq T \cup i_{\mu}(A) \subseteq A$. Therefore, we obtain $A = T \cup i_{\mu}(A)$.
- (3). Since A is an (Λ, μ) -open we have $A = T \cup i_{\mu}(A)$, where T is a \wedge_{μ}^{*} -set. Also $T \subseteq A$, we have $\wedge_{\mu}^{*}(A) \supseteq \wedge_{\mu}^{*}(T)$ and hence $A \supseteq \wedge_{\mu}^{*}(A) \cup i_{\mu}(A) \supseteq \wedge_{\mu}^{*}(T) \cup i_{\mu}(A) = T \cup i_{\mu}(A) = A$. Therefore, we obtain $A = \wedge_{\mu}^{*}(A) \cup i_{\mu}(A)$.

Theorem 2.11. Let (X, μ) be a μ - R_0 space. A singleton $\{x\}$ is (Λ, μ) -closed if and only if $\{x\}$ is μ -closed.

Proof. Necessity. Suppose that $\{x\}$ is (Λ, μ) -closed. Then, by Theorem 2.9, $\{x\} = \Lambda_{\mu}(\{x\}) \cap c_{\mu}(\{x\})$. For any μ -open set U containing x, $c_{\mu}(\{x\}) \subseteq U$ and hence $c_{\mu}(\{x\}) \subseteq \Lambda_{\mu}(\{x\})$. Therefore, we have $\{x\} = \Lambda_{\mu}(\{x\}) \cap c_{\mu}(\{x\}) \supseteq c_{\mu}(\{x\})$. This shows that $\{x\}$ is μ -closed.

Sufficiency. Suppose that $\{x\}$ is μ -closed. Since $\{x\} \subseteq \Lambda_{\mu}(\{x\})$, we have $\Lambda_{\mu}(\{x\}) \cap c_{\mu}(\{x\}) = \Lambda_{\mu}(\{x\}) \cap \{x\} = \{x\}$. This shows that $\{x\}$ is (Λ, μ) -closed.

Theorem 2.12. A GTS (X, μ) is μ - T_1 if and only if for each x. X, the singleton $\{x\}$ is a Λ_{μ} -set.

Proof. Necessity. Suppose that $y \in \Lambda_{\mu}(\{x\})$ for some point y distinct from x. Then $y \in \cap\{V_x \mid x \in V_x \text{ and } V_x \text{ is } \mu\text{-open}\}$ and hence $y \in V_x$ for every μ -open set V_x containing x. This contradicts that (X, μ) is an μ -T₁.

Sufficiency. Suppose that $\{x\}$ is a Λ_{μ} -set for each $x \in X$. Let x and y be any distinct points. Then $y \notin \Lambda_{\mu}(\{x\})$ and there exists an μ -open set V_x such that $x \in V_x$ and $y \notin V_x$. Similarly, $x \notin \Lambda_{\mu}(\{y\})$ and there exists an μ -open set V_y such that $y \in V_y$ and $x \notin V_y$. This shows that (X, μ) is μ -T₁.

Theorem 2.13. A GTS (X, μ) is μ - T_1 if and only if $(X, \mu^{\Lambda_{\mu}})$ is the discrete space.

Proof. Necessity. Suppose that (X, μ) is μ -T₁. Let x be any point of X. By Theorem 3.12, $\{x\}$ is a Λ_{μ} -set and $\{x\} \in \mu^{\Lambda_{\mu}}$. For any subset A of X, by Lemma 2.7, $\Lambda_{\mu}(A) \in \mu^{\Lambda_{\mu}}$. This shows that $(X, \mu^{\Lambda_{\mu}})$ is discrete.

Sufficiency. For each $x \in X$, $\{x\} \in \mu^{\Lambda_{\mu}}$ and hence $\{x\}$ is Λ_{μ} -set. By Theorem 3.12, (X, μ) is μ -T₁.

Theorem 2.14. If a function $f: (X, \mu) \to (Y, \lambda)$ is μ - α -irresolute, then $f: (X, \mu^{\Lambda_{\mu}}) \to (Y, \lambda^{\Lambda\lambda})$ is (μ, λ) -continuous.

Proof. Let V be any Λ_{λ} -set of (Y, λ) , i.e. $V \in \lambda^{\Lambda\lambda}$. Then $V = \Lambda_{\lambda}(V) = \cap \{W : V \subseteq W \text{ and } W \text{ is } \lambda \text{-}\alpha\text{-open in } (Y, \lambda)\}$. Since f is λ - α -irresolute, f⁻¹(W) is μ - α -open in (X, μ) for each W. Hence we have $f^{-1}(V) = \cap \{f^{-1}(W) : f^{-1}(V) \subseteq f^{-1}(W)$ and W is λ - α -open in $(Y, \lambda)\} \supseteq \cap \{U : f^{-1}(V) \subseteq U \text{ and } U \text{ is } \mu\text{-open in } (X, \mu)\} = \Lambda_{\mu}(f^{-1}(V))$. On the other hand, by the definition $f^{-1}(V) \subseteq \Lambda_{\mu}(f^{-1}(V))$. Therefore, we obtain $f^{-1}(V) = \Lambda_{\mu}(f^{-1}(V))$. Hence, $f^{-1}(V) \in \mu^{\Lambda_{\mu}}$ and $f : (X, \mu) \to (Y, \lambda)$ is (μ, λ) -continuous.

3. (Λ, μ) -Continuous Functions

Definition 3.1. Let (X, μ) be a GTS, $x \in X$ and $\{x_s, s \in S\}$ be a net of X. We say that the net $\{x_s, s \in S\}$ (Λ, μ) -converges to x if for each (Λ, μ) -open set U containing x there exists an element $s_0 \in S$ such that $s \leq s_0$ implies $x_s \in U$.

Lemma 3.2. Let (X, μ) be a GTS and $A \subseteq X$. A point $x \in A^{(\Lambda,\mu)}$ if and only if there exists a net $\{x_s, s \in S\}$ of A which (Λ, μ) -converges to x.

Definition 3.3. Let (X, μ) be a GTS, $F = \{F_i : i \in I\}$ be a filterbase of X and $x \in X$. We say that the filter base $F(\Lambda, \mu)$ -converges to x if for each (Λ, μ) -open set U containing x there is a member $F_i \in F$ such that $F_i \subseteq U$.

Definition 3.4. A function $f: (X, \mu) \to (Y, \lambda)$ is called (Λ, μ) -continuous if $f^{-1}(V)$ is a (Λ, μ) -open subset of X for every λ -open subset V of Y.

Theorem 3.5. For a function $f: (X, \mu) \to (Y, \lambda)$, the following statements are equivalent:

- (1). f is (Λ, μ) -continuous;
- (2). For each $x \in X$ and for each open set V of Y containing f(x) there exists a (Λ, μ) -open set U of X containing x and $f(U) \subseteq V$;
- (3). For each $x \in X$ and each filterbase F which (Λ, μ) -converges to x, f(F) converges to f(x).
- (4). For each $x \in X$ and each net $\{x_s, s \in S\}$ in X which (Λ, μ) -converges to x, the net $\{f(x_s), s \in S\}$ of Y converges to $f(x) \in Y$.

Definition 3.6. A function $f: (X, \mu) \to (Y, \lambda)$ is called (Λ, μ) -irresolute if $f^{-1}(V)$ is a (Λ, μ) -open subset of X for every (Λ, λ) -open subset V of Y. Now we have the following result with its proof is obvious.

Theorem 3.7. For a function $f: (X, \mu) \to (Y, \lambda)$, the following statements are equivalent.

- (1). f is (Λ, μ) -irresolute;
- (2). $f^{-1}(B)$ is a (Λ, μ) -closed subset of X for every (Λ, λ) -closed subset B of Y;
- (3). For each $x \in X$ and for each (Λ, λ) -open set V of Y containing f(x) there exists a (Λ, μ) -open set U of X containing x and $f(U) \subseteq V$;
- (4). $f(A^{(\Lambda,\lambda)}) \subseteq [f(A)]^{(\Lambda,\lambda)}$ for each subset A of X;
- (5). $[f^{-1}(B)]^{(\Lambda,\lambda)} \subseteq f^{-1}(B^{(\Lambda,\lambda)})$ for each subset B of Y;
- (6). For each $x \in X$ and each filterbase F which (Λ, μ) -converges to x, f(F) (Λ, λ) -converges to f(x);
- (7). For each $x \in X$ and each net $\{x_s, s \in S\}$ in X which (Λ, μ) -converges to x, we have that the net $\{f(x_s), s \in S\}$ of Y (Λ, λ) -converges to $f(x) \in Y$.

Definition 3.8. A function $f: (X, \mu) \to (Y, \lambda)$ is called quasi- (Λ, μ) -irresolute if $f^{-1}(V)$ is a (Λ, μ) -open subset of X for every λ - α -open subset V of Y.

Theorem 3.9. For a function $f: (X, \mu) \to (Y, \lambda)$, the following statements are equivalent.

- (1). f is quasi- (Λ, μ) -irresolute;
- (2). For each $x \in X$ and for each λ -open set V of Y containing f(x) there exists a (Λ, μ) -open set U of X containing x and $f(U) \subseteq V$;
- (3). For each $x \in X$ and each filterbase F which (Λ, μ) -converges to x, $f(F) \lambda$ -converges to f(x) (that is, for each μ -open set U containing f(x) there is a member $F_i \in F$ such that $F_i \subseteq U$);
- (4). For each $x \in X$ and each net $\{x_s, s \in S\}$ in X which (Λ, μ) -converges to x, the net $\{f(x_s), s \in S\}$ of Y λ -converges to $f(x) \in Y$ (i.e. for each μ -open set U containing f(x) there exists an element $s_0 \in S$ such that $s \ge s_0$ implies $f(x_s) \in U$).

Theorem 3.10. For a function $f: (X, \mu) \to (Y, \lambda)$, the following statements are true.

- (1). If the function f is (Λ, μ) -irresolute, then the function f is (Λ, μ) -continuous and quasi- (Λ, μ) -irresolute.
- (2). If the function f is quasi- (Λ, μ) -irresolute, then the function f is (Λ, μ) -continuous.
- (3). If the function f is μ -irresolute, then the function f is quasi- (Λ, μ) -irresolute.
- (4). If the function f is μ -continuous, then the function f is (Λ, μ) -continuous.

Example 3.11. Let (X, μ) be a GTS such that $X = \{a, b, c\}$ with $\mu = \{\phi X, \{a\}, \{a, b\}, \{a, c\}\}$. Also, the family of all \wedge_{μ}^{*} -sets is $\{\phi, X, \{c\}, \{b\}, \{b, c\}\}$ and the family of all (Λ, μ) -open sets is $\{\phi, X, \{a, b\}, \{a, c\}, \{b\}, \{c\}, \{a\}, \{b, c\}\}$. We consider the function $f: X \to X$ defined by f(c) = a and f(a) = f(b) = c. We have

- (1). f is (Λ, μ) -irresolute, quasi- (Λ, μ) -irresolute and (Λ, μ) -continuous,
- (2). f is not μ -irresolute, since if x = c and $\{a\}$ is the μ -open neighbourhood of f(c) = a in X, then for every μ -open neighbourhood of c in X we have $f(U) \notin \{a\}$, and
- (3). f is not (α, μ) -continuous and the proof is similar to that of (2).

Example 3.12. Let (X, μ) be a GTS such that $X = \{a, b, c, d\}$ and $\mu = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}\}$. b, d}}. Also, the family of all \wedge_{μ}^{*} -sets is $\{\phi, X, \{c, d\}, \{a, c, d\}, \{a, d\}, \{a, c\}, \{d\}, \{c\}\}$ and the family of all (Λ, μ) -open sets is $\{\phi, X, \{a, b\}, \{b\}, \{c\}, \{d\}, \{b, c, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, d\}, \{a, c\}, \{c, d\}\}$. We consider the function $f: X \to X$ defined as follows: f(a) = d, f(b) = c, f(c) = d and f(d) = a. The following hold.

- (1). f is not (Λ, μ) -irresolute at the point a since if $\{d\}$ is the (Λ, μ) -open neighbourhood of f(a) = d in X, then $f(U) \nsubseteq \{d\}$ for every (Λ, μ) -open neighbourhood of a in X and
- (2). f is (Λ, μ) -continuous.

4. Λ_{μ} -D Sets and Associated Separation Axioms

Definition 4.1. A GTS (X, μ) is called Λ_{μ} - T_1 if for any distinct pair of points x and y in X, there is a (Λ, μ) -open set U in X containing x but not y and a (Λ, μ) -open set V in X containing y but not x.

Definition 4.2. A GTS (X, μ) is called Λ_{μ} - T_2 if for any distinct pair of points x and y in X, there exist (Λ, μ) -open sets U and V in X containing x and y, respectively, such that $U \cap V = \phi$.

Definition 4.3. A GTS (X, μ) is called μ - α - R_0 if for each μ - α -open set U and each $x \in U$, $C_{\alpha}(x) \subseteq U$.

Definition 4.4. A GTS (X, μ) is called sober $(\mu - \alpha)$ - R_0 if $\bigcap_{x \in X} c_{\mu}(\{x\}) = \phi$.

Example 4.5. Let (X, μ) be a GTS such that $X = \{a, b, c\}$ and $\mu = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. Clearly, the singletons $\{a\}, \{b\}$ and $\{c\}$ are Λ_{μ} -D sets. Now we have

- (1). (X, μ) is Λ_{μ} - T_i , i = 0, 1, 2,
- (2). (X, μ) is Λ_{μ} - D_i , i = 0, 1, 2, and
- (3). (X, μ) is not μ -R₀.

Example 4.6. Let (X, μ) be a GTS such that $X = \{a, b, c, d\}$ and $\mu = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}\}$. The singletons $\{a\}, \{b\}, \{c\}$ and $\{d\}$ are Λ_{μ} -D sets. We have

- (1). (X, μ) is not μ - T_i , i = 1, 2, but satisfies (Λ, μ) -property,
- (2). (X, μ) is Λ_{μ} - T_i , i = 1, 2, and
- (3). (X, μ) is Λ_{μ} - D_i , i = 0, 1, 2.

Example 4.7. Let (X, μ) be a GTS such that $X = \{a, b, c, d\}$ and $\mu = \{\phi, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. The family of \wedge_{μ}^{*} -sets is $\{\phi, X, \{c, d\}, \{d\}, \{c\}\}$ and the family of (Λ, μ) -open sets is $\{\phi, X, \{a, b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b\}, \{c, d\}, \{d\}, \{c\}\}$. So, we have

- (1). (X, μ) is not Λ_{μ} - D_i , i = 0, 1, 2,
- (2). (X, μ) is not μ -R₀ and μ -R₁ and
- (3). (X, μ) is sober $(\mu \alpha) R_0$ (i.e., $\bigcap_{x \in X} c_{\mu}(\{x\}) = \phi$).

Theorem 4.8. A GTS (X, μ) satisfies (Λ, μ) -property if and only if for each pair of distinct points x, y of $X, \{x\}^{(\Lambda,\mu)} \neq \{y\}^{(\Lambda,\mu)}$.

Proof. Sufficiency. Suppose that x, $y \in X$, $x \neq y$ and $\{x\}^{(\Lambda,\mu)} \neq \{y\}^{(\Lambda,\mu)}$. Let z be a point of X such that $z \in \{x\}^{(\Lambda,\mu)}$ but $z \notin \{y\}^{(\Lambda,\mu)}$. We claim that $x \notin \{y\}^{(\Lambda,\mu)}$. For, if $x \in \{y\}^{(\Lambda,\mu)}$ then $\{x\}^{(\Lambda,\mu)} \subseteq \{y\}^{(\Lambda,\mu)}$. This contradicts the fact that $z \notin \{y\}^{(\Lambda,\mu)}$. Consequently x belongs to the (Λ, μ) -open set $[\{y\}^{(\Lambda,\mu)}]^c$ to which y does not belong.

Necessity. Let (X, μ) satisfies (Λ, μ) -property and x, y be any two distinct points of X. There exists a (Λ, μ) -open set G containing x or y, say x but not y. Then G^c is a (Λ, μ) -closed set which does not contain x but contains y. Since $\{y\}^{(\Lambda,\mu)}$ is the smallest (Λ, μ) -closed set containing y (Lemma 2.15(2)), $\{y\}^{(\Lambda,\mu)} \subseteq G^c$ and so $x \notin \{y\}^{(\Lambda,\mu)}$. Therefore $\{x\}^{(\Lambda,\mu)} \neq \{y\}^{(\Lambda,\mu)}$.

Theorem 4.9. A GTS (X, μ) is Λ_{μ} - T_1 if and only if the singletons are (Λ, μ) -closed sets.

Proof. Suppose (X, μ) is Λ_{μ} -T₁ and x be any point of X. Let $y \in \{x\}^c$. Then $x \neq y$ and so there exists a (Λ, μ) -open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently $y \in U_y \subseteq \{x\}^c$ i.e., $\{x\}^c = \cup \{U_y \mid y \in \{x\}^c\}$ which is (Λ, μ) -open.

To prove the converse, suppose {p} is (Λ, μ) -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in \{x\}^c$. Hence $\{x\}^c$ is a (Λ, μ) -open set containing y but not containing x. Similarly $\{y\}^c$ is a (Λ, μ) -open set containing x but not containing y. This means that X is a Λ_{μ} -T₁ space.

Theorem 4.10. If $f: (X, \mu) \to (Y, \lambda)$ is a (Λ, μ) -irresolute surjective function and E is a Λ_{μ} -D set in Y, then the inverse image of E is a Λ_{μ} -D set in X.

Proof. Let E be a Λ_{μ} -D set in Y. Then there are (Λ, μ) -open sets U_1 and U_2 in Y such that $S = U_1 - U_2$ and $U_1 \neq Y$. By the (Λ, μ) -irresoluteness of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are (Λ, μ) -open in X. Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$. Hence $f^{-1}(E) = f^{-1}(U_1) - f^{-1}(U_2)$ is a Λ_{μ} -D set in X.

Theorem 4.11. If (Y, λ) is Λ_{λ} - D_1 and $f: (X, \mu) \to (Y, \lambda)$ is (Λ, μ) -irresolute and bijective, then (X, μ) is Λ_{λ} - D_1 .

Proof. Suppose that Y is a Λ_{λ} -D₁ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is Λ_{λ} -D₁, there exist Λ_{λ} -D sets G_x and G_y of Y containing f(x) and f(y) respectively, such that f(y) \notin G_x and f(x) \notin G_y. By Theorem 5.10, f⁻¹(G_x) and f⁻¹(G_y) are Λ_{λ} -D sets in X containing x and y respectively. This implies that X is a Λ_{λ} -D₁ space.

Theorem 4.12. A GTS (X, μ) is Λ_{μ} - D_1 if and only if for each pair of distinct points $x, y \in X$, there exists a (Λ, μ) -irresolute surjective function $f: (X, \mu) \to (Y, \lambda)$, where Y is a Λ_{λ} - D_1 space such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a (Λ, μ) -irresolute, surjective function f of a space X onto a Λ_{λ} -D₁ space Y such that $f(x) \neq f(y)$. Therefore, there exist disjoint Λ_{μ} -D sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is (Λ, μ) -irresolute and surjective, by Theorem 5.10, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint Λ_{μ} -D sets in X containing x and y, respectively. Hence by Theorem 2.21(2) X is Λ_{μ} -D₁ space.

5. (Λ, μ) -Compactness and (Λ, μ) -Connectedness

Definition 5.1. A GTS (X, μ) is said to be (Λ, μ) -compact if every cover of X by (Λ, μ) -open sets of (X, μ) has a finite subcover.

Theorem 5.2. A GTS (X, μ) is (Λ, μ) -compact if and only if for every family $\{A_i : i \in I\}$ of (Λ, μ) -closed sets in X satisfying $\cap \{A_i : i \in I\} = \phi$, there is a finite subfamily A_{i1}, \dots, A_{in} with $\cap \{A_{ik} : k = 1, \dots, n\} = \phi$.

Theorem 5.3. For a GTS (X, μ) , the following properties hold.

- (1). If $(X, \mu^{\Lambda_{\mu}})$ is compact, then (X, μ) is μ -compact.
- (2). If (X, μ) is (Λ, μ) -compact, then (X, μ) is μ -compact.
- (3). If (X, μ) is (Λ, μ) -compact, then (X, \wedge^*_{μ}) is compact.

Proof.

- (1). Let $\{V_{\mu} : \mu \in \nabla\}$ be any μ -open cover of X. By Lemma 2.7, every μ -open V_{μ} is a Λ_{μ} -set for each $\mu \in \nabla$. Moreover, by the compactness of $(X, \mu^{\Lambda_{\mu}})$ there exists a finite subset ∇_0 of ∇ such that $X = \bigcup \{V_{\mu} \mid \mu \in \nabla_0\}$. This shows that (X, μ) is μ -compact.
- (2). Let $\{F_{\mu} \mid \mu \in \nabla\}$ be a family of μ -closed sets of (X, μ) such that $\cap\{F_{\mu} \mid \mu \in \nabla\} = \phi$. Every μ -closed is (Λ, μ) -closed for each $\mu \in \nabla$. By Theorem 6.2, there exists a finite subset ∇_0 of ∇ such that $\cap\{F_{\mu} \mid \mu \in \nabla_0\} = \phi$. It follows from [[2], Theorem 2.17] that (X, μ) is μ -compact.
- (3). Let $\{V_{\mu} \mid \mu \in \nabla\}$ be a cover of X by \wedge_{μ}^{*} -sets of (X, μ) . Since $V_{\mu} = V_{\mu} \cup \phi$ and the empty set is μ -open, by Lemma 2.7 each V_{μ} is (Λ, μ) -open in (X, μ) . Since (X, μ) is (Λ, μ) -compact, there exists a finite subset ∇_{0} of ∇ such that $X = \cup \{V_{\mu} \mid \mu \in \nabla_{0}\}$. This shows that (X, \wedge_{μ}^{*}) is compact.

Corollary 5.4. If (X, μ) is (Λ, μ) -compact, then (X, μ) is compact.

The following example shows that the converse of Corollary 6.4 does not hold.

Example 5.5. Let I be an infinite space and let (X, μ) be a GTS such that $X = \{a\} \cup \{a_i: i \in I\}$ and $\mu = \{\phi, X, \{a\}\}$. Clearly, the space (X, μ) is compact but it is not (Λ, μ) -compact.

Theorem 5.6. If $f: (X, \mu) \to (Y, \lambda)$ is a (Λ, μ) -irresolute surjection and (X, μ) is a (Λ, μ) -compact space, then (Y, λ) is (Λ, λ) -compact.

Proof. Let $\{V_{\lambda} \mid \lambda \in \nabla\}$ be any cover of Y by (Λ, λ) -open sets of (Y, λ) . Since f is (Λ, μ) -irresolute, by Theorem 5.8 $\{f^{-1}(V_{\mu}) \mid \mu \in \nabla\}$ is a cover of X by (Λ, μ) -open sets of (X, μ) . Thus, there exists a finite subset ∇_0 of ∇ such that $X = \cup\{f^{-1}(V_{\mu}) \mid \mu \in \nabla_0\}$. Since f is surjective, we obtain $Y = f(X) = \cup\{V_{\lambda} \mid \lambda \in \nabla_0\}$. This shows that (Y, λ) is (Λ, λ) -compact.

Definition 5.7. A GTS (X, μ) is called (Λ, μ) -connected (resp. μ - α -connected) if X cannot be written as a disjoint union of two non-empty (Λ, μ) -open (resp. μ - α -open) sets.

The proof of the following theorem is straightforward and therefore is omitted.

Theorem 5.8. Every (Λ, μ) -connected space is μ - α -connected space.

The following example shows that μ -connectedness does not imply (Λ, μ) -connectedness.

Example 5.9. Let (X, μ) be a GTS such that $X = \{a, b, c\}$ and $\mu = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. We have

- (1). (X, μ) is μ -connected and μ - α -connected, and
- (2). (X, μ) is not (Λ, μ) -connected.

Theorem 5.10. For a GTS (X, μ) , the following statements are equivalent.

- (1). (X, μ) is (Λ, μ) -connected;
- (2). The only subsets of X, which are both (Λ, μ) -open and (Λ, μ) -closed are the empty set ϕ and X.

Theorem 5.11. If a GTS (X, μ) is (Λ, μ) -connected, then $(X, \mu^{\Lambda_{\mu}})$ is connected.

Proof. Suppose that $(X, \mu^{\Lambda_{\mu}})$ is not connected. There exist nonempty Λ_{μ} -sets G, H of (X, μ) such that $G \cap H = \phi$ and $G \cup H = X$. By Lemma 2.10, G and H are (Λ, μ) -closed sets. This shows that (X, μ) is not (Λ, μ) -connected.

Theorem 5.12. If $f: (X, \mu) \to (Y, \lambda)$ is a (Λ, μ) -irresolute surjection and (X, μ) is (Λ, μ) -connected, then (Y, λ) is (Λ, λ) -connected.

Proof. Suppose that (Y, λ) is not (Λ, λ) -connected. There exist nonempty (Λ, λ) -open sets G, H of Y such that $G \cap H = \phi$ and $G \cup H = Y$. Then we have $f^{-1}(G) \cap f^{-1}(H) = \phi$ and $f^{-1}(G) \cup f^{-1}(H) = X$. Moreover, $f^{-1}(G)$ and $f^{-1}(H)$ are nonempty (Λ, μ) -open sets of (X, μ) . This shows that (X, μ) is not (Λ, μ) -connected. Therefore, (Y, λ) is (Λ, λ) -connected.

References

- [1] S.-Z. Bai and Y.-P. Zuo, On g- α -irresolute functions, Acta Math. Hungar., 130(4)(2011), 382-389.
- [2] A.Csaszar, γ-connected sets, Acta Math. Hungar., 101(4)(2003), 273-279.
- [3] A.Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96(4)(2002), 351-357.
- [4] Jyothis Thomas and Sunil Jacob John, μ-compactness in generalized topological spaces, Journal of Advanced Studies in Topology, 3(3)(2012), 18-22.
- [5] S.Maragathavalli, M.Sheik John and D.Sivaraj, On g-closed sets in generalized topological spaces, Journal of Advanced Research in Pure Mathematics, 2(1)(2010), 57-64.
- [6] W.K. Min, Almost continuity on generalized topological spaces, Acta Math. Hungar., 125(1-2)(2009), 121-125.

- [7] W.K.Min, Some results on generalized topological spaces and generalized systems, Acta Math. Hungar., 108(1-2)(2005), 171-181.
- [8] B.Roy and Erdal Ekici, On (Λ,)-closed sets in generalized topological spaces, Method of Functional Analysis and Topology, 17(2)(2011), 174-179.
- [9] B.Roy, On generalized R0 and R1 spaces, Acta Math. Hungar., 127(3)(2010), 291-300.
- [10] B.Roy, On a type of generalized open sets, Applied General topology, 12(2)(2011), 163-173.