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1. Introduction

A molecular graph of a chemical graph is a simple graph related to the structure of a chemical compound. Each vertex

of this graph represents an atom of the molecule and its edges to the bonds between atoms. A topological index is a

numerical parameter mathematically derived from the graph structure. In Chemical Science, the physico-chemical properties

of chemical compounds are often modelled by means of molecular graph based structure descriptors, which are also referred

to as topological indices, see [1]. The graph considered here are finite undirected without loops and multiple edges. Let G =

(V, E) be a connected graph. The degree dG(v) of a vertex v is the number of vertices adjacent to v. The edge connecting

vertices u and v will be denoted by uv. Let dG(e) denote the degree of an edge e = uv in G, which is defined by dG(e) =

dG(u) + dG(v) – 2. For all further notation and terminology, we refer to reader to [2]. The degree based graph invariants

M 1(G) and M 2(G), called Zagreb indices, were introduced by Gutman et al. in [1] and have been extensively studied. The

first and second Zagreb indices of a graph G are defined as M1 (G) =
∑

u∈V (G)

dG (u)2 or M1 (G) =
∑

uv∈E(G)

[dG (u) + dG (v)]

and M2 (G) =
∑

uv∈E(G)

dG (u) dG (v). Followed by the first Zagreb index of a graph G, Furtula et al. [3] introduced the so

called forgotten topological index or F-index, defined as

F (G) =
∑

u∈V (G)

dG (u)3 .

The generalized version of the first Zagreb index [4] of a graph G is defined as

ZM
a+1
1 (G) =

∑

u∈V (G)

dG (u)a+1 =
∑

uv∈E(G)

[dG (u)a + dG (v)a] (1)
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where a is a real number. The modified first and second Zagreb indices [5] are respectively defined as

m
M1 (G) =

∑

u∈V (G)

1

dG (u)2
,

m
M2 (G) =

∑

uv∈E(G)

1

dG (u) + dG (v)
.

These indices were studied by Kulli in [6, 7]. In [8], Shirdel et al. introduced the hyper-Zagreb index of a graph G and

defined it as

HM1 (G) =
∑

uv∈E(G)

[dG (u) + dG (v)]2 .

The sum connectivity index of a graph G was proposed by Zhou et al. in [9] and is defined as

X (G) =
∑

uv∈E(G)

1
√

dG (u) + dG (v)
.

The harmonic index of a graph G is defined as

H (G) =
∑

uv∈E(G)

2

dG (u) + dG (v)
.

This index was studied by Favaron et al [10] and Zhong [11]. In [12], Zhou et al. proposed the general sum connectivity

index of a graph G and defined it as

M
a

1 (G) =
∑

uv∈E(G)

[dG (u) + dG (v)]a . (2)

This index was also studied, for example, in [13]. One of the best known and widely used topological index is the product

connectivity index or Randić index, introduced by Randić in [14]. The product connectivity index is defined as

χ (G) =
∑

uv∈E(G)

1
√

dG (u) dG (v)
.

This index was studied, for example, in [15, 16]. The general product connectivity index [13, 17] is defined as

M
a

2 (G) =
∑

uv∈E(G)

[dG (u) dG (v)]a . (3)

In [18], Miličević et al. proposed the reformulated first Zagreb index of a graph G and defined it as

EM1 (G) =
∑

e∈E(G)

dG (e)2 .

In [19], Kulli introduced the K -edge index of a graph G and defined it as

Ke (G) =
∑

e∈E(G)

dG (e)3 .

This index was also studied, for example, in [20]. The general reformulated Zagreb index [21] of a graph G is defined as

EM
a

1 (G) =
∑

e∈E(G)

dG (e)a . (4)
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The inverse sum indeg index is the descriptor that was selected in [21] as a significant predictor of total surface area of

octane isomers and for which the extremal graphs obtained with the help of Mathematical Chemistry have a particularly

simple and elegant structure. The inverse sum indeg index of a graph G is defined as

ISI (G) =
∑

uv∈E(G)

dG (u) dG (v)

dG (u) + dG (v)
. (5)

This index was studied, for example, in [23]. In [24], Estrada et al. defined the atom bond connectivity index which stated

as

ABC (G) =
∑

uv∈E(G)

√

dG (u) + dG (v)− 2

dG (u) dG (v)
. (6)

The following graph invariant has proved to be a valuable predictive index in the study of the heat of formation in octanes

and heptanes (see [25]), whose prediction power is better than atom bond connectivity index (see [26]). The augmented

Zagreb index of a graph G was introduced by Furtula et al. in [25] and is defined as

AZI (G) =
∑

uv∈E(G)

(

dG (u) dG (v)

dG (u) + dG (v)− 2

)3

. (7)

In this paper, we consider the tetrameric 1,3-adamantane and determine several topological indices of tetrameric 1,3-

adamantane.

2. Results for Tetrameric 1,3-Adamantane

In chemistry, diamandoids are variants of the carbon cage known as adamantane (C10H16), the smallest unit cage structure

of the diamond crystal lattice. We focus on the molecular graph structure of the family of Tetrameric 1,3-Adamantane,

denoted TA[n]. The graph of tetrameric 1,3-adamantane TA[4] is shown in Figure 1, see [27].

Figure 1. The graph of tetrameric 1,3-adamantane TA [4]

By algebraic method, we obtain |V (TA[n])| = 10n and |E(TA[n])| = 13n – 1. From Figure 1, it is easy to see that there

are three partitions of the vertex set of TA[n] as follows: Let G be the graph of TA[n].

V2 = {u ∈ V (G)|dG(u) = 2}, |V2| = 6n.

V3 = {u = V (G)|dG(u) = 3}, |V3| = 2n+ 2.

V4 = {u = V (G)|dG(u) = 4}, |V4| = 2n− 2.

Also by algebraic method, we obtain three edge partitions of G (=TA[n]) based on the sum of the degrees of the end

vertices of each edge (or the product of the degrees of the end vertices of each edge) as follows:

E5 = E
∗

6 = {uv ∈ E(G)|dG(u) = 2, dG(v) = 3}, |E5| = |E∗

6 | = 6n+ 6.

E6 = E
∗

8 = {uv ∈ E(G)|dG(u) = 2, dG(v) = 4}, |E6| = |E∗

8 | = 6n− 6.

E8 = E
∗

16 = {uv ∈ E(G)|dG(u) = dG(v) = 4}, |E6| = |E∗

16| = n− 1.
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The edge degree partition of G is given in Table 1.

dG(u), dG(v)\ uv ∈ E(G) (2, 3) (2, 4) (4, 4)

dG(e), 3 4 6

Number of edges 6n+ 6 6n− 6 n− 1

Table 1. Edge degree partition of TA[n]

Theorem 2.1. The generalized version of the first Zagreb index of TA[n] is given by

ZM
a+1
1 (TA [n]) =

(

3× 2a+1 + 3a+1 + 4a+1) 2n+
(

3a+1 − 4a+1) 2. (8)

Proof. Let G = TA[n]. From equation (1) and by cardinalities of the vertex partition of TA[n], we have

ZM
a+1
1 (TA [n]) =

∑

u∈V (G)

dG (u)a+1

=
∑

u∈V2

dG (u)a+1 +
∑

u∈V3

dG (u)a+1 +
∑

u∈V4

dG (u)a+1

= 2a+16n+ 3a+1 (2n+ 2) + 4a+1 (2n− 2)

=
(

3× 2a+1 + 3a+1 + 4a+1) 2n+
(

3a+1 − 4a+1) 2.

We obtain the following results by using Theorem 2.1.

Corollary 2.2. The first Zagreb index of TA[n] is given by M1(TA[n]) = 74n− 14.

Proof. Put a = 1 in equation (8), we get the desired result.

Corollary 2.3. The F-index of TA[n] is given by F (TA[n]) = 230n− 74.

Proof. Put a = 2 in equation (8), we get the desired result.

Corollary 2.4. The modified first Zagreb index of TA[n] is given by mM1(TA[n]) = 1
72

(133n+ 7).

Proof. Put a = −3 in equation (8), we get the desired result.

In the following theorem, we compute the general sum connectivity index of TA[n].

Theorem 2.5. The general sum connectivity index of TA[n] is given by

M
a

1 (TA [n]) = (6× 5a + 6× 6a + 8a)n+ (6× 5a − 6× 6a − 8a) . (9)

Proof. Let G = TA[n]. From equation (2) and by cardinalities of the edge partition of TA[n], we have

M
a

1 (TA [n]) =
∑

uv∈E(G)

[dG (u) + dG (v)]a

=
∑

uv∈E5

[dG (u) + dG (v)]a +
∑

uv∈E6

[dG (u) + dG (v)]a +
∑

uv∈E8

[dG (u) + dG (v)]a

= 5a (6n+ 6) + 6a (6n− 6) + 8a (n− 1)

= (6× 5a + 6× 6a + 8a)n+ (6× 5a − 6× 6a − 8a) .
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We obtain the following corollaries by using Theorem 2.5.

Corollary 2.6. The first zegreb index of TA[n] is given by M1(TA[n] = 74n− 14.

Proof. Put a = 1 in equation (9), we get the desired result.

Corollary 2.7. The hyper-Zagreb index of TA[n] is given by HM1(TA[n]) = 430n− 130.

Proof. Put a = 2 in equation (9), we get the desired result.

Corollary 2.8. The sum connectivity index of TA[n] is given by

X(TA[n]) =

(

6√
5
+

6√
6
+

1

2
√
2

)

n+

(

6√
5
− 6√

6
− 1

2
√
2

)

Proof. Put a = − 1
2
in equation (9), we get the desired result.

In the following theorem, we compute the general product connectivity index of TA[n].

Theorem 2.9. The general product connectivity index of TA[n] is given by

M
a

2 (TA [n]) = (6× 6a + 6× 8a + 16a)n+ (6× 6a − 6× 8a − 16a) . (10)

Proof. Let G = TA[n]. From equation (3) and by coordinates of the edge partition of TA[n] based on the product degrees

of the end vertices of each edge, we have

M
a

2 (TA [n]) =
∑

uv∈(G)

[dG (u) dG (v)]a

=
∑

uv∈E∗

6

[dG (u) dG (v)]a +
∑

uv∈E∗

8

[dG (u) dG (v)]a +
∑

uv∈E∗

16

[dG (u) dG (v)]a

= 6a (6n+ 6) + 8a (6n− 6) + 16a (n− 1)

= (6× 6a + 6× 8a + 16a)n+ (6× 6a − 6× 8a − 16a) .

We now obtain the following corollaries by using Theorem 2.9.

Corollary 2.10. The second Zagreb index of TA[n] is given by M2(TA[n]) = 100n− 28.

Proof. Put a = 1 in equation (10), we get the desired result.

Corollary 2.11. The modified second Zagreb index of TA[n] is given by mM2(TA[n]) = 29
16
n+ 3

16
.

Proof. Put a = −1 in equation (10), we get the desired result.

Corollary 2.12. The product connectivity index of TA[n] is given by

χ(TA[n]) =

(√
6 +

3√
2
+

1

4

)

n+

(√
6− 3√

2
− 1

4

)

.

Proof. Put a = − 1
2
in equation (10), we get the desired result.

In the next theorem, we compute the general first reformulated Zagreb index of TA[n].
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Theorem 2.13. The general first reformulated Zagreb index of TA[n] is given by

EM
a

1 (TA [n]) = (6× 3a + 6× 4a + 6a)n+ (6× 3a − 6× 4a − 6a) . (11)

Proof. Let G = TA[n]. From equation (4) and by cardinalities of the edge partition of TA[n], we have

EM
a

1 (TA [n]) =
∑

e∈E(G)

dG (e)a

=
∑

e∈E5

dG (e)a +
∑

e∈E6

dG (e)a +
∑

e∈E8

dG (e)a

= 3a (6n+ 6) + 4a (6n− 6) + 6a (n− 1)

= (6× 3a + 6× 4a + 6a)n+ (6× 3a − 6× 4a − 6a) .

We obtain the following results by using Theorem 2.13.

Corollary 2.14. The first reformulated Zagreb index of TA[n] is given by EM1(TA[n]) = 186n− 78.

Proof. Put a = 2 in equation (11), we get the desired result.

Corollary 2.15. The K-edge index of TA[n] is given by Ke(TA[n]) = 762n− 438.

Proof. Put a = 3 in equation (11), we get the desired result.

Theorem 2.16. The harmonic index of TA[n] is given by H (G) = 113
20

n− 17
20
.

Proof. Let G = TA[n]. By definition and by cardinalities of the edge partition of TA[n], we have

H (G) =
∑

uv∈E(G)

2

dG (u) + dG (v)

= (6n+ 6)

(

2

2 + 3

)

+ (6n− 6)

(

2

2 + 4

)

+ (n− 1)

(

2

4 + 4

)

=
113

20
n− 17

20
.

Theorem 2.17. The inverse sum indeg index of TA[n] is given by ISI (TA [n]) = 86
5
n− 14

5
.

Proof. Let G = TA[n]. From equation (5) and by cardinalities of the edge partition of TA[n], we have

ISI (TA [n]) =
∑

uv∈E(G)

dG (u) dG (v)

dG (u) + dG (v)

= (6n+ 6)

(

2× 3

2 + 3

)

+ (6n− 6)

(

2× 4

2 + 4

)

+ (n− 1)

(

4× 4

4 + 4

)

=
86

5
n− 14

5
.

Theorem 2.18. The atom bond connectivity index of TA[n] is given by

ABC (TA [n]) =

(

12√
2
+

3

2
√
2

)

n−
√
3

2
√
2
.
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Proof. Let G = TA[n]. From equation (6) and by cardinalities of the edge partition of TA[n], we have

ABC (TA [n]) =
∑

uv∈E(G)

√

dG (u) + dG (v)− 2

dG (u) dG (v)

= (6n+ 6)

√

2 + 3− 2

2× 3
+ (6n− 6)

√

2 + 4− 2

2× 4
+ (n− 1)

√

4 + 4− 2

4× 4

=

(

12√
2
+

√
3

2
√
2

)

n−
√
3

2
√
2
.

Theorem 2.19. The augmented Zagreb index of TA[n] is given by

AZI (TA [n]) =

(

96 +
512

27

)

n− 512

27
.

Proof. Let G = TA[n]. From equation (7) and by cardinalities of the edge partition of TA[n], we have

AZI (TA [n]) =
∑

uv∈E(G)

(

dG (u) dG (v)

dG (u) + dG (v)− 2

)3

= (6n+ 6)

(

2× 3

2 + 3− 2

)3

+ (6n− 6)

(

2× 4

2 + 4− 2

)3

+ (n− 1)

(

4× 4

4 + 4− 2

)3

=

(

96 +
512

27

)

n− 512

27
.
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