Volume 3, Issue 8 (2017), 1-10.

ISSN: 2394-5745

Available Online: http://ijcrst.in/

International Journal of Current Research in Science and Technology

$(1,2)^{\star}$ - ψ -closed Sets

Research Article

S.Saranya¹, N.Seenivasagan² and O.Ravi³*

- 1 Department of Mathematics, SLS MAVMM AV College, Madurai, Tamil Nadu, India.
- 2 PG and Research Department of Mathematics, Government Arts College, Kumbakonam, Tamil Nadu, India.
- 3 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

Abstract: In this paper, we introduce a new class of sets namely $(1,2)^*$ - ψ -closed sets in bitopological spaces. This class lies between the class of $\tau_{1,2}$ -closed sets and the class of $(1,2)^*$ - \hat{g} -closed sets. The notion of $(1,2)^*$ - ψ -interior is defined and some

of its basic properties are studied. Also we introduce the concept of $(1,2)^*$ - ψ -closure in bitopological spaces using the notion of $(1,2)^*$ - ψ -closed sets, and we obtain some related results. For any $A \subseteq X$, it is proved that the complement of

 $(1,2)^*$ - ψ -interior of A is the $(1,2)^*$ - ψ -closure of the complement of A.

MSC: 54E55

Keywords: $(1,2)^*$ - ψ -closed set, $\tau_{1,2}$ -closed set, $(1,2)^*$ - \hat{g} -closed set, $(1,2)^*$ -asg-closed set, $(1,2)^*$ -sg-open set.

© JS Publication.

1. Introduction

Levine [4] introduced generalized closed sets in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. Many researchers like Veerakumar [16] introduced \hat{g} -closed sets in topological spaces. Sheik John [15] introduced ω -closed sets in topological spaces. After the advent of these notions, many topologists introduced various types of generalized closed sets and studied their fundamental properties. Quite Recently, Ravi and Ganesan [5] introduced and studied ψ -closed sets in general topology as another generalization of closed sets and proved that the class of ψ -closed sets properly lies between the class of closed sets and the class of ω -closed sets. Ravi et al [12], Ravi and Thivagar [9] and Duszynski et al [1] introduced $(1,2)^*$ -g-closed sets, $(1,2)^*$ -sg-closed sets and $(1,2)^*$ - \hat{g} -closed sets respectively. In this paper, we introduce a new class of sets namely $(1,2)^*$ - ψ -closed sets in bitopological spaces. This class lies between the class of $\tau_{1,2}$ -closed sets and the class of $(1,2)^*$ - \hat{g} -closed sets. The notion of $(1,2)^*$ - ψ -interior is defined and some of its basic properties are studied. Also we introduce the concept of $(1,2)^*$ - ψ -closure in bitopological spaces using the notion of $(1,2)^*$ - ψ -closed sets, and we obtain some related results. For any $A \subseteq X$, it is proved that the complement of $(1,2)^*$ - ψ -interior of A is the $(1,2)^*$ - ψ -closure of the complement of A.

2. Preliminaries

Throughout this paper, (X, τ_1, τ_2) (briefly, X) will denote bitopological space.

^{*} E-mail: jsankar.4326@gmail.com

Definition 2.1. Let S be a subset of X. Then S is said to be $\tau_{1,2}$ -open [10] if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.2 ([10]). Let S be a subset of a bitopological space X. Then

- (1). the $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as $\cup \{F : F \subseteq S \text{ and } F \text{ is } \tau_{1,2}\text{-open}\}$.
- (2). the $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined as $\cap \{F : S \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-closed}\}$.

Definition 2.3. A subset A of a bitopological space X is called

- (1). $(1,2)^*$ -semi-open [9] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A));
- (2). $(1,2)^*$ - α -open [3] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)));
- (3). $(1,2)^*$ - β -open [13] if $A \subseteq \tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(\tau_{1,2}$ -cl(A))).

The complements of the above mentioned open sets are called their respective closed sets.

The $(1,2)^*$ -semi-closure [14] (resp. $(1,2)^*$ - α -closure [14], $(1,2)^*$ -sp-closure [13]) of a subset A of X, denoted by $(1,2)^*$ -scl(A) (resp. $(1,2)^*$ - α cl(A), $(1,2)^*$ -spcl(A)), is defined to be the intersection of all $(1,2)^*$ -semi-closed (resp. $(1,2)^*$ - α -closed, $(1,2)^*$ - β -closed) sets of (X, τ_1 , τ_2) containing A. It is known that $(1,2)^*$ -scl(A) (resp. $(1,2)^*$ - α cl(A), $(1,2)^*$ -spcl(A)) is a $(1,2)^*$ -semi-closed (resp. $(1,2)^*$ - α -closed, $(1,2)^*$ - β -closed) set.

Definition 2.4. A subset A of a bitopological space (X, τ_1, τ_2) is called

- (1). $(1,2)^*$ -g-closed [12] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -g-closed set is called $(1,2)^*$ -g-open;
- (2). $(1,2)^*$ -sg-closed [9] if $(1,2)^*$ -scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ -sg-closed set is called $(1,2)^*$ -sg-open;
- (3). $(1,2)^*$ -gs-closed [9] if $(1,2)^*$ -scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gs-closed set is called $(1,2)^*$ -gs-open;
- (4). $(1,2)^*$ - αg -closed [11] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ - αg -closed set is called $(1,2)^*$ - αg -open;
- (5). $(1,2)^*$ - \hat{g} -closed [1] or $(1,2)^*$ - ω -closed [2] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ - \hat{g} -closed (resp. $(1,2)^*$ - ω -closed) set is called $(1,2)^*$ - \hat{g} -open (resp. $(1,2)^*$ - ω -open);
- (6). $(1,2)^*$ - \ddot{g}_{α} -closed [6] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -sg-open in X. The complement of $(1,2)^*$ - \ddot{g}_{α} -closed set is called $(1,2)^*$ - \ddot{g}_{α} -open;
- (7). $(1,2)^*$ -gsp-closed [13] if $(1,2)^*$ -spcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gsp-closed set is called $(1,2)^*$ -gsp-open;
- (8). $(1,2)^*$ - ψ -closed [7] if $(1,2)^*$ scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -sg-open in X. The complement of $(1,2)^*$ - ψ -closed set is called $(1,2)^*$ - ψ -open.

Remark 2.5. The collection of all $(1,2)^*$ - \ddot{g}_{α} -closed (resp. $(1,2)^*$ -gsp-closed, $(1,2)^*$ - \ddot{g} -closed, $(1,2)^*$ -gsp-closed, $(1,2)^*$ -gsp-closed, $(1,2)^*$ -gsp-closed, $(1,2)^*$ -semi-closed) sets is denoted by $(1,2)^*$ - $\ddot{G}_{\alpha}C(X)$ (resp. $(1,2)^*$ -GSPC(X), $(1,2)^*$ - $\ddot{G}_{\alpha}C(X)$, $(1,2)^*$ -GSC(X), $(1,2)^*$ -GSC(X), $(1,2)^*$ -GSC(X), $(1,2)^*$ -SGC(X), $(1,2)^*$ -SGC(X). We denote the power set of X by P(X).

Remark 2.6.

- (1). Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -semi-closed but not conversely [9].
- (2). Every $\tau_{1,2}$ -closed set is $(1,2)^*$ - α -closed but not conversely [14].
- (3). Every $(1,2)^*$ -semi-closed set is $(1,2)^*$ - ψ -closed but not conversely [7].
- (4). Every $(1,2)^*$ -semi-closed set is $(1,2)^*$ -sg-closed but not conversely [9].
- (5). Every $(1,2)^*$ - \hat{g} -closed set is $(1,2)^*$ -g-closed but not conversely [1].
- (6). Every $(1,2)^*$ -sg-closed set is $(1,2)^*$ -gs-closed but not conversely [11].
- (7). Every $(1,2)^*$ -g-closed set is $(1,2)^*$ - α g-closed but not conversely [8].
- (8). Every $(1,2)^*$ -g-closed set is $(1,2)^*$ -gs-closed but not conversely [11].

3. $(1,2)^*$ - ψ -closed Sets

We introduce the following definition.

Definition 3.1. A subset A of a bitopological space X is called $(1,2)^*$ - αgs -closed if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ - αsg -closed set is called $(1,2)^*$ - αsg -open. The collection of all $(1,2)^*$ - αgs -closed sets in X is denoted by $(1,2)^*$ - $\alpha GSC(X)$.

Proposition 3.2. Every $\tau_{1,2}$ -closed set is $(1,2)^*$ - ψ -closed.

Proof. If A is a $\tau_{1,2}$ -closed subset of X and G is any $(1,2)^*$ -sg-open set containing A, then $G \supseteq A = (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ - ψ -closed in X.

The converse of Proposition 3.2 need not be true as seen from the following example.

Example 3.3. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a, b\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{a, b\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}, \{c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$. Clearly, the set $\{a, c\}$ is $(1,2)^*$ - ψ -closed but it is not a $\tau_{1,2}$ -closed set in X.

Proposition 3.4. Every $(1,2)^*$ - \ddot{g}_{α} -closed set is $(1,2)^*$ - ψ -closed.

Proof. If A is a $(1,2)^*$ - \ddot{g}_{α} -closed subset of X and G is any $(1,2)^*$ -sg-open set containing A, then $G \supseteq (1,2)^*$ - $\alpha cl(A) \supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ - ψ -closed in X.

The converse of Proposition 3.4 need not be true as seen from the following example.

Example 3.5. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{c\}\}$. Then the sets in $\{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$ and $(1,2)^*$ - $\ddot{G}_{\alpha}C(X) = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$. Clearly, the set $\{a\}$ is $(1,2)^*$ - ψ -closed but not an $(1,2)^*$ - \ddot{G}_{α} -closed set in X.

Proposition 3.6. Every $(1,2)^*$ - ψ -closed set is $(1,2)^*$ - \hat{g} -closed.

Proof. Suppose that $A \subseteq G$ and G is $(1,2)^*$ -semi-open in X. Since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -sg-open and A is $(1,2)^*$ - ψ -closed, therefore $(1,2)^*$ -scl $(A) \subseteq G$. Hence A is $(1,2)^*$ - \hat{g} -closed in X.

The converse of Proposition 3.6 need not be true as seen from the following example.

Example 3.7. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Clearly, the set $\{b\}$ is $(1,2)^*$ - \hat{g} -closed but not a $(1,2)^*$ - ψ -closed set in X.

Proposition 3.8. Every $(1,2)^*$ - α -closed set is $(1,2)^*$ - \ddot{g}_{α} -closed.

Proof. If A is an $(1,2)^*$ - α -closed subset of X and G is any $(1,2)^*$ -sg-open set containing A, we have $(1,2)^*$ - α cl(A) = A \subseteq G. Hence A is $(1,2)^*$ - $\ddot{\alpha}$ -closed in X.

The converse of Proposition 3.8 need not be true as seen from the following example.

Example 3.9. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a, b\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\alpha C(X) = \{\emptyset, \{c\}, X\}$ and $(1,2)^*$ - $\ddot{G}_{\alpha}C(X) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$. Clearly, the set $\{a, c\}$ is $(1,2)^*$ - \ddot{g}_{α} -closed but not an $(1,2)^*$ - α -closed set in X.

Proposition 3.10. Every $(1,2)^*$ - \hat{g} -closed set is $(1,2)^*$ - αgs -closed.

Proof. If A is a $(1,2)^*$ - \hat{g} -closed subset of X and G is any $(1,2)^*$ -semi-open set containing A, then $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - α gs-closed in X.

The converse of Proposition 3.10 need not be true as seen from the following example.

Example 3.11. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\hat{G}C(X) = \{\emptyset, \{b, c\}, X\}$ and $(1,2)^*$ - $\alpha GSC(X) = \{\emptyset, \{b\}, \{c\}, \{b\}, c\}, X\}$. Clearly, the set $\{b\}$ is $(1,2)^*$ - αgs -closed but not a $(1,2)^*$ - \hat{g} -closed set in X.

Proposition 3.12. Every $(1,2)^*$ - ψ -closed set is $(1,2)^*$ -g-closed.

Proof. If A is a $(1,2)^*$ - ψ -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg-open, we have $G \supseteq (1,2)^*$ -scl(A) $\supseteq \tau_{1,2}$ -cl(A). Hence A is $(1,2)^*$ -g-closed in X.

The converse of Proposition 3.12 need not be true as seen from the following example.

Example 3.13. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open as well as $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $(1,2)^*$ -GC(X) = P(X). Clearly, the set $\{a, b\}$ is $(1,2)^*$ -g-closed but not $(1,2)^*$ - ψ -closed set in X.

Proposition 3.14. Every $(1,2)^*$ - ψ -closed set is $(1,2)^*$ - αgs -closed.

Proof. If A is a $(1,2)^*$ - ψ -closed subset of X and G is any $(1,2)^*$ -semi-open set containing A, since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -sg-open, we have $G \supseteq (1,2)^*$ -scl $(A) \supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - α gs-closed in X.

The converse of Proposition 3.14 need not be true as seen from the following example.

Example 3.15. In Example 3.13, we obtain $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $(1,2)^*$ - $\alpha GSC(X) = P(X)$. Clearly, the set $\{a, c\}$ is an $(1,2)^*$ - αgs -closed but not a $(1,2)^*$ - ψ -closed set in X.

Proposition 3.16. Every $(1,2)^*$ - ψ -closed set is $(1,2)^*$ - αg -closed.

Proof. If A is a $(1,2)^*$ - ψ -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg-open, we have $G \supseteq (1,2)^*$ -scl(A) $\supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - α g-closed in X.

The converse of Proposition 3.16 need not be true as seen from the following example.

Example 3.17. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a, b\}\}$ and $\tau_2 = \{\emptyset, X, \{c\}\}$. Then the sets in $\{\emptyset, X, \{c\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}, \{a, b\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{c\}, \{a, b\}, X\}$ and $(1,2)^*$ - $\alpha GC(X) = P(X)$. Clearly, the set $\{a, c\}$ is $(1,2)^*$ - αg -closed but not a $(1,2)^*$ - ψ -closed set in X.

Proposition 3.18. Every $(1,2)^*$ - ψ -closed set is $(1,2)^*$ -gs-closed.

Proof. If A is a $(1,2)^*$ - ψ -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg-open, we have $G \supset (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ -gs-closed in X.

The converse of Proposition 3.18 need not be true as seen from the following example.

Example 3.19. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $GSC(X) = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Clearly, the set $\{a, b\}$ is $(1,2)^*$ -gs-closed but not a $(1,2)^*$ - ψ -closed set in X.

Proposition 3.20. Every $(1,2)^*$ - ψ -closed set is $(1,2)^*$ -sg-closed.

Proof. If A is a $(1,2)^*$ - ψ -closed subset of X and G is any $(1,2)^*$ -semi-open set containing A, since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -sg-open, we have $G \supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ -sg-closed in X.

The converse of Proposition 3.20 need not be true as seen from the following example.

Example 3.21. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{b\}\}$ and $\tau_2 = \{\emptyset, X, \{a, c\}\}$. Then the sets in $\{\emptyset, X, \{b\}, \{a, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b\}, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{b\}, \{a, c\}, X\}$ and $(1,2)^*$ -SGC(X) = P(X). Clearly, the set $\{a\}$ is $(1,2)^*$ -sg-closed but not a $(1,2)^*$ - ψ -closed set in X.

Proposition 3.22. Every $(1,2)^*$ - \ddot{g}_{α} -closed set is $(1,2)^*$ - αgs -closed.

Proof. If A is an $(1,2)^*$ - \ddot{g}_{α} -closed subset of X and G is any $(1,2)^*$ -semi-open set containing A, since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -sg-open, we have $(1,2)^*$ - α cl(A) \subseteq G. Hence A is $(1,2)^*$ - α gs-closed in X.

The converse of Proposition 3.22 need not be true as seen from the following example.

Example 3.23. In Example 3.13, we have $(1,2)^*$ - $\ddot{G}_{\alpha}C(X) = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $(1,2)^*$ - $\alpha GSC(X) = P(X)$. Clearly, the set $\{a, b\}$ is $(1,2)^*$ - αgs -closed but not an $(1,2)^*$ - \ddot{G}_{α} -closed set in X.

Proposition 3.24. Every $(1,2)^*$ - αgs -closed set is $(1,2)^*$ - αg -closed.

Proof. If A is an $(1,2)^*$ - α gs-closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -semi-open, we have $(1,2)^*$ - α cl(A) \subseteq G. Hence A is $(1,2)^*$ - α g-closed in X.

The converse of Proposition 3.24 need not be true as seen from the following example.

Example 3.25. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. We have $(1,2)^*$ - $\alpha GC(X) = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $\alpha GSC(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Clearly, the set $\{a, c\}$ is $(1,2)^*$ - αg -closed but not an $(1,2)^*$ - αg -closed set in X.

Proposition 3.26. Every $(1,2)^*$ - ψ -closed set is $(1,2)^*$ -gsp-closed.

Proof. If A is a $(1,2)^*$ - ψ -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg-open, we have $G \supseteq (1,2)^*$ -scl(A) $\supseteq (1,2)^*$ -spcl(A). Hence A is $(1,2)^*$ -gsp-closed in X.

The converse of Proposition 3.26 need not be true as seen from the following example.

Example 3.27. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{b\}\}$ and $\tau_2 = \{\emptyset, X, \{a, b\}\}$. Then the sets in $\{\emptyset, X, \{b\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. We have $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $(1,2)^*$ -GSPC(X) = $\{\emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Clearly, the set $\{b, c\}$ is $(1,2)^*$ -gsp-closed but not a $(1,2)^*$ - ψ -closed set in X.

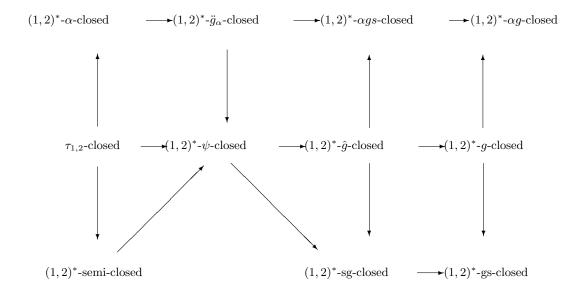
Proposition 3.28. Every $(1,2)^*$ - \hat{g} -closed set is $(1,2)^*$ -sg-closed.

Proof. If A is a $(1,2)^*$ - \hat{g} -closed subset of X and G is any $(1,2)^*$ -semi-open set containing A, then $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ -sg-closed in X.

The converse of Proposition 3.28 need not be true as seen from the following example.

Example 3.29. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{b\}\}$ and $\tau_2 = \{\emptyset, X, \{a, b\}\}$. Then the sets in $\{\emptyset, X, \{b\}, \{a, b\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}, \{a, c\}\}\}$ are called $\tau_{1,2}$ -closed. We have $(1,2)^*$ - $\hat{G}C(X) = \{\emptyset, X, \{c\}, \{a, c\}\}\}$ and $(1,2)^*$ -SGC(X) = $\{\emptyset, X, \{a\}, \{c\}, \{d\}, \{a, c\}\}\}$. Clearly, the set $\{a\}$ is $(1,2)^*$ -sg-closed but not a $(1,2)^*$ - \hat{g} -closed set in X.

Remark 3.30. From the above Propositions, Examples and Remark, we obtain the following diagram, where $A \rightarrow B$ (resp. $A \leftrightarrow B$) represents A implies B but not conversely.



4. Properties of $(1,2)^*$ - ψ -closed Sets

Example 4.1. The intersection of all $(1,2)^*$ -sg-open subsets of X containing A is called the $(1,2)^*$ -sg-kernel of A and denoted by $(1,2)^*$ -sg-ker(A).

Lemma 4.2. A subset A of a bitopological space X is $(1,2)^*$ - ψ -closed if and only if $(1,2)^*$ - $scl(A) \subseteq (1,2)^*$ -sg-ker(A).

Proof. Suppose that A is $(1,2)^*$ - ψ -closed. Then $(1,2)^*$ -scl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -sg-open. Let $x \in (1,2)^*$ -scl(A). If $x \in (1,2)^*$ -sg-ker(A), then there is a $(1,2)^*$ -sg-open set U containing A such that $x \notin U$. Since U is a $(1,2)^*$ -sg-open set containing A, we have $x \notin (1,2)^*$ -scl(A) and this is a contradiction.

Conversely, let $(1,2)^*$ -scl(A) \subseteq $(1,2)^*$ -sg-ker(A). If U is any $(1,2)^*$ -sg-open set containing A, then $(1,2)^*$ -scl(A) \subseteq $(1,2)^*$ -sg-ker(A) \subseteq U. Therefore, A is $(1,2)^*$ - ψ -closed.

Remark 4.3. Union of any two $(1,2)^*$ - ψ -closed sets need not be $(1,2)^*$ - ψ -closed as seen from the following example.

Example 4.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a, b\}\}$ and $\tau_2 = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}\}$. Then the sets in $\{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - ψ C(X) = $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\}$. Clearly, the sets $\{b\}$ and $\{c\}$ are $(1,2)^*$ - ψ -closed but their union $\{b, c\}$ is not a $(1,2)^*$ - ψ -closed set in X.

Proposition 4.5. If a set A is $(1,2)^*$ - ψ -closed in X then $(1,2)^*$ -scl(A) – A contains no nonempty $\tau_{1,2}$ -closed set in X.

Proof. Suppose that A is $(1,2)^*$ - ψ -closed. Let F be a $\tau_{1,2}$ -closed subset of $(1,2)^*$ -scl(A) - A. Then A $\subseteq F^c$. But A is $(1,2)^*$ - ψ -closed, therefore $(1,2)^*$ -scl(A) $\subseteq F^c$. Consequently, F $\subseteq (\tau_{1,2}\text{-cl}(A))^c$. We already have F $\subseteq (1,2)^*$ -scl(A). Thus F $\subseteq (1,2)^*$ -scl(A) $\cap ((1,2)^*$ -scl(A)) c and F is empty.

The converse of Proposition 4.5 need not be true as seen from the following example.

Example 4.6. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. If $A = \{b\}$, then $(1,2)^*$ -scl $(A) - A = \{c\}$ does not contain any nonempty $\tau_{1,2}$ -closed set. But A is not a $(1,2)^*$ - ψ -closed set in X.

Theorem 4.7. If a set A is $(1,2)^*$ - ψ -closed in X then $(1,2)^*$ -scl(A) – A contains no nonempty $(1,2)^*$ -sg-closed set.

Proof. Suppose that A is $(1,2)^*$ - ψ -closed. Let S be a $(1,2)^*$ -sg-closed subset of $(1,2)^*$ -scl(A) - A. Then A \subseteq S^c. Since A is $(1,2)^*$ - ψ -closed, we have $(1,2)^*$ -scl(A) \subseteq S^c. Consequently, S \subseteq $((1,2)^*$ -scl(A))^c. Hence, S \subseteq $(1,2)^*$ -scl(A) \cap $((1,2)^*$ -scl(A))^c $= \emptyset$. Therefore S is empty.

Theorem 4.8. If A is $(1,2)^*$ - ψ -closed in X and $A \subseteq B \subseteq (1,2)^*$ -scl(A), then B is $(1,2)^*$ - ψ -closed in X.

Proof. Let B ⊆ U where U is $(1,2)^*$ -sg-open set in X. Then A ⊆ U. Since A is $(1,2)^*$ - ψ -closed, $(1,2)^*$ -scl(A) ⊆ U. Since B ⊆ $(1,2)^*$ -scl(A), $(1,2)^*$ -scl(B) ⊆ $(1,2)^*$ -scl(A). Therefore $(1,2)^*$ -scl(B) ⊆ U and B is $(1,2)^*$ - ψ -closed in X.

Proposition 4.9. If A is $(1,2)^*$ -sg-open and $(1,2)^*$ - ψ -closed in X, then A is $(1,2)^*$ -semi-closed in X.

Proof. Since A is $(1,2)^*$ -sg-open and $(1,2)^*$ - ψ -closed, $(1,2)^*$ -scl(A) \subseteq A and hence A is $(1,2)^*$ -semi-closed in X.

Proposition 4.10. For each $x \in X$, either $\{x\}$ is $(1,2)^*$ -sg-closed or $\{x\}^c$ is $(1,2)^*$ - ψ -closed in X.

Proof. Suppose that $\{x\}$ is not $(1,2)^*$ -sg-closed in X. Then $\{x\}^c$ is not $(1,2)^*$ -sg-open and the only $(1,2)^*$ -sg-open set containing $\{x\}^c$ is the space X itself. Therefore $(1,2)^*$ -scl $(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is $(1,2)^*$ - ψ -closed in X.

5. $(1,2)^*-\psi$ -interior

We introduce the following definition.

Definition 5.1. For any $A \subseteq X$, $(1,2)^*$ - ψ -int(A) is defined as the union of all $(1,2)^*$ - ψ -open sets contained in A. That is $(1,2)^*$ - ψ -int $(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } (1,2)^*$ - ψ -open $\}$.

Lemma 5.2. For any $A \subseteq X$, $\tau_{1,2}$ -int $(A) \subseteq (1,2)^*$ - ψ -int $(A) \subseteq A$.

The following two Propositions are easy consequences from definitions.

Proposition 5.3. For any $A \subseteq X$,

- (1). $(1,2)^*$ - ψ -int(A) is the largest $(1,2)^*$ - ψ -open set contained in A.
- (2). A is $(1,2)^*$ - ψ -open if and only if $(1,2)^*$ - ψ -int(A) = A.

Proposition 5.4. For any subsets A and B of X,

- (1). $(1,2)^* \psi int(A \cap B) \subseteq (1,2)^* \psi int(A) \cap (1,2)^* \psi int(B)$.
- (2). $(1,2)^* \psi int(A \cup B) \supseteq (1,2)^* \psi int(A) \cup (1,2)^* \psi int(B)$.
- (3). If $A \subseteq B$, then $(1,2)^* \psi int(A) \subseteq (1,2)^* \psi int(B)$.
- (4). $(1,2)^* \psi int(X) = X \text{ and } (1,2)^* \psi int(\emptyset) = \emptyset.$

6. $(1,2)^*$ - ψ -closure

Definition 6.1. For every set $A \subseteq X$, we define the $(1,2)^*$ - ψ -closure of A to be the intersection of all $(1,2)^*$ - ψ -closed sets containing A. In symbols, $(1,2)^*$ - ψ -cl $(A) = \cap \{F : A \subseteq F \in (1,2)^*$ - ψ C $(X)\}$.

Lemma 6.2. For any $A \subseteq X$, $A \subseteq (1,2)^* - \psi - cl(A) \subseteq \tau_{1,2} - cl(A)$.

Proof. It follows from the fact that every $\tau_{1,2}$ -closed set is $(1,2)^*$ - ψ -closed.

Remark 6.3. Both containment relations in Lemma 6.2 may be proper as seen from the following example.

Example 6.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X\}$ and $\tau_2 = \{\emptyset, X, \{a, b\}\}$. Then the sets in $\{\emptyset, X, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}\}$ are called $\tau_{1,2}$ -closed. Let $A = \{a\}$. Then $(1,2)^*$ - ψ -cl $(A) = \{a, c\}$ and so $A \subset (1,2)^*$ - ψ -cl $(A) \subset \tau_{1,2}$ -cl(A).

Lemma 6.5. For any $A \subseteq X$, $(1,2)^* - \omega - cl(A) \subseteq (1,2)^* - \psi - cl(A)$, where $(1,2)^* - \omega - cl(A)$ is given by $(1,2)^* - \omega - cl(A) = \bigcap \{F : A \subseteq F \in (1,2)^* - \hat{G}C(X)\}.$

Remark 6.6. Containment relation in the above Lemma 6.5 may be proper as seen from the following example.

Example 6.7. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, X, \{a\}, \{a, b, c\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{d\}, \{a, d\}, \{b, c, d\}\}$ are called $\tau_{1,2}$ -closed. Then $(1, 2)^* - \psi C(X) = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{b, c\}, \{b, c, d\}, X\}$ and $(1, 2)^* - \hat{G}C(X) = \{\emptyset, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Let $A = \{c, d\}$. Then $(1, 2)^* - \psi - cl(A) = \{b, c, d\}$ and $(1, 2)^* - \psi - cl(A) = \{c, d\}$. So, $(1, 2)^* - \psi - cl(A) \subset (1, 2)^* - \psi - cl(A)$.

Lemma 6.8. For an $x \in X$, $x \in (1,2)^*$ - ψ -cl(A) if and only if $V \cap A \neq \emptyset$ for every $(1,2)^*$ - ψ -open set V containing x.

Proof. Let $x \in (1,2)^*$ - ψ -cl(A) for any $x \in X$. To prove $V \cap A \neq \emptyset$ for every $(1,2)^*$ - ψ -open set V containing x. Prove the result by contradiction. Suppose there exists a $(1,2)^*$ - ψ -open set V containing x such that $V \cap A = \emptyset$. Then $A \subset V^c$ and V^c is $(1,2)^*$ - ψ -closed. We have $(1,2)^*$ - ψ -cl(A) $\subset V^c$. This shows that $x \in (1,2)^*$ - ψ -cl(A) which is a contradiction. Hence $V \cap A \neq \emptyset$ for every $(1,2)^*$ - ψ -open set V containing x.

Conversely, let $V \cap A \neq \emptyset$ for every $(1,2)^*$ - ψ -open set V containing X. To prove $X \in (1,2)^*$ - ψ -cl(A). We prove the result by contradiction. Suppose $X \in (1,2)^*$ - ψ -cl(A). Then there exists a $(1,2)^*$ - ψ -closed set Y containing Y such that $Y \notin Y$. Then Y is Y and Y is Y is Y is Y is Y is Y is Y in Y is Y in Y is Y in Y is Y in Y in Y is Y in Y

Proposition 6.9. For any $A \subseteq X$,

- (1). $(1,2)^*-\psi$ -cl(A) is the smallest $(1,2)^*-\psi$ -closed set containing A.
- (2). A is $(1,2)^*$ - ψ -closed if and only if $(1,2)^*$ - ψ -cl(A) = A.

Proposition 6.10. For any two subsets A and B of X,

- (1). If $A \subseteq B$, then $(1,2)^* \psi cl(A) \subseteq (1,2)^* \psi cl(B)$.
- (2). $(1,2)^* \psi cl(A \cap B) \subset (1,2)^* \psi cl(A) \cap (1,2)^* \psi cl(B)$.

Theorem 6.11. Let A be any subset of a bitopological space X. Then

- (1). $((1,2)^* \psi int(A))^c = (1,2)^* \psi cl(A^c)$.
- (2). $(1,2)^* \psi int(A) = ((1,2)^* \psi cl(A^c))^c$.
- (3). $(1,2)^* \psi cl(A) = ((1,2)^* \psi int(A^c))^c$.

Proof.

(1). Let $x \in ((1,2)^*-\psi-int(A))^c$. Then $x \in (1,2)^*-\psi-int(A)$. That is, every $(1,2)^*-\psi$ -open set U containing x is such that U $\not\subseteq A$. That is, every $(1,2)^*-\psi$ -open set U containing x is such that $U \cap A^c \neq \emptyset$. By Lemma 6.8, $x \in (1,2)^*-\psi-cl(A^c)$ and therefore $((1,2)^*-\psi-int(A))^c \subseteq (1,2)^*-\psi-cl(A^c)$.

Conversely, let $x \in (1,2)^*$ - ψ -cl(A^c). Then by Lemma 6.8, every $(1,2)^*$ - ψ -open open set U containing x is such that U $\cap A^c \neq \emptyset$. That is, every $(1,2)^*$ - ψ -open set U containing x is such that $U \nsubseteq A$. This implies by Definition 5.1, $x \notin (1,2)^*$ - ψ -int(A). That is, $x \in ((1,2)^*$ - ψ -int(A)) c and so $(1,2)^*$ - ψ -cl(A^c) $\subseteq ((1,2)^*$ - ψ -int(A)) c . Thus $((1,2)^*$ - ψ -int(A)) c $= (1,2)^*$ - ψ -cl(A^c).

- (2). Follows by taking complements in (1).
- (3). Follows by replacing A by A^c in (1).

References

^[1] Z.Duszynski, O.Ravi, M.Jeyaraman, M.S.Joseph and M.L.Thivagar, A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.

^[2] S.Jafari, M.Lellis Thivagar and Nirmala Mariappan, On (1, 2)*-αĝ-closed sets, J. Adv. Math. Studies, 2(2)(2009), 25-34.

- [3] M.Lellis Thivagar, O.Ravi and M.E.Abd El-Monsef, Remarks on bitopological $(1,2)^*$ -quotient mappings, J. Egypt Math. Soc., 16(1)(2008), 17-25.
- [4] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [5] O.Ravi and S.Ganesan, \ddot{g} -closed sets in topology, International Journal of Computer Science and Emerging Technologies, 2(2011), 330-337.
- [6] O.Ravi and S.Ganesan, $(1,2)^*$ - \ddot{g}_{α} -closed sets in bitopology, (submitted).
- [7] O.Ravi, M.Kamaraj, A.Pandi and K.Kumaresan, $(1,2)^*$ - \ddot{g} -closed and $(1,2)^*$ - \ddot{g} -open maps in bitopological spaces, International Journal of Mathematical Archive, 3(2)(2012), 586-594.
- [8] O.Ravi, M.L.Thivagar and A.Nagarajan, $(1,2)^*$ - αg -closed sets and $(1,2)^*$ - $g\alpha$ -closed sets, (submitted).
- [9] O.Ravi and M.Lellis Thivagar, A bitopological (1, 2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2), 29(1)(2006), 79-88.
- [10] O.Ravi and M.Lellis Thivagar, On stronger forms of $(1,2)^*$ -quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra., 14(6) (2004), 481-492.
- [11] O.Ravi, S.Pious Missier and T.Salai Parkunan, On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11)(2010), 543-557.
- [12] O.Ravi, M.L.Thivagar and Jinjinli, Remarks on extensions of $(1,2)^*$ -g-closed maps, Archimedes J. Math., 1(2)(2011), 177-187.
- [13] O.Ravi and M.L.Thivagar, Remarks on λ -irresolute functions via $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1)(2010), 1-15.
- [14] O.Ravi, M.L.Thivagar and E.Hatir, Decomposition of $(1,2)^*$ -continuity and $(1,2)^*$ - α -continuity, Miskolc Mathematical Notes., 10(2)(2009), 163-171.
- [15] M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph. D Thesis, Bharathiar University, Coimbatore, (2002).
- [16] M.K.R.S.Veera kumar, \hat{g} -closed sets in topological spaces, Bull. Allah. Math. Soc., 18(2003), 99-112.