

International Journal of Current Research in Science and Technology

Weakly \mathcal{I}_q - ω -closed Sets

Research Article

K.Banumathi¹, I.Rajasekaran² and O.Ravi^{2*}

- 1 Department of Mathematics, St. Aloysius College of Education, Royappanpatti, Theni, Tamil Nadu, India.
- 2 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
- **Abstract:** In this paper, another generalized class of τ^* called weakly \mathcal{I}_{g} - ω -closed sets is studied and the notion of weakly \mathcal{I}_{g} - ω -open sets in ideal topological spaces is also studied. The relationships of weakly \mathcal{I}_{g} - ω -closed sets with various other sets are investigated.

MSC: 54A05, 54A10.

Keywords: τ^* , generalized class, weakly \mathcal{I}_g - ω -closed set, ideal topological space, generalized closed set, \mathcal{I}_g - ω -closed set, $pre^*_{\mathcal{I}}$ -closed set, $pre^*_{\mathcal{I}}$ -closed set, $pre^*_{\mathcal{I}}$ -closed set, $re^*_{\mathcal{I}}$ -closed set,

© JS Publication.

1. Introduction

The first step of generalizing closed sets (briefly, g-closed sets) was done by Levine in 1970 [13]. He defined a subset S of a topological space (X, τ) to be g-closed if its closure is contained in every open superset of S. As the weak form of g-closed sets, the notion of weakly g-closed sets was introduced and studied by Sundaram and Nagaveni [18]. Sundaram and Pushpalatha [19] introduced and studied the notion of strongly g-closed sets, which are weaker than closed sets and stronger than g-closed sets. Park and Park [17] introduced and studied the notion of mildly g-closed sets, which is properly placed between the class of strongly g-closed sets and the class of weakly g-closed sets. Moreover, the relations with other notions directly or indirectly connected with g-closed sets were investigated by them. In 1999, Dontchev et al. [6] studied the notion of generalized closed sets in ideal topological spaces via \mathcal{I}_g -open sets [14]. In 2013, Ekici and Ozen [8] introduced a generalized class of τ^* in ideal topological spaces. The notion of ω -open sets in topological spaces introduced by Hdeib [9] has been studied in recent years by a good number of researchers like Noiri et al [16], Al-Omari and Noorani [3, 4] and Khalid Y. Al-Zoubi [11]. The main aim of this paper is to study another generalized class of τ^* called weakly \mathcal{I}_g - ω -open sets. The relationships of weakly \mathcal{I}_g - ω -open sets. The relationships of weakly \mathcal{I}_g - ω -closed sets with various other sets are discussed.

2. Preliminaries

Throughout this paper, \mathbb{R} (resp. \mathbb{Q} , $(\mathbb{R} - \mathbb{Q})$, $(\mathbb{R} - \mathbb{Q})_{-}$ and $(\mathbb{R} - \mathbb{Q})_{+}$) denotes the set of real numbers (resp. the set of rational numbers, the set of negative irrational numbers and the set of positive irrational

^{*} E-mail: siingam@yahoo.com

numbers). In this paper, (X, τ) represents a topological space on which no separation axioms are assumed unless explicitly stated. The closure and interior of a subset G of a topological space (X, τ) will be denoted by cl(G) and int(G), respectively.

Definition 2.1. A subset G of a topological space (X, τ) is said to be

- (1). g-closed [13] if $cl(G) \subseteq H$ whenever $G \subseteq H$ and H is open in X;
- (2). g-open [13] if $X \setminus G$ is g-closed;
- (3). weakly g-closed [18] if $cl(int(G)) \subseteq H$ whenever $G \subseteq H$ and H is open in X;
- (4). strongly g-closed [19] if $cl(G) \subseteq H$ whenever $G \subseteq H$ and H is g-open in X.

Definition 2.2 ([21]). In a topological space (X, τ) , a point p in X is called a condensation point of a subset H if for each open set U containing $p, U \cap H$ is uncountable.

Definition 2.3 ([9]). A subset H of a topological space (X, τ) is called ω -closed if it contains all its condensation points. The complement of an ω -closed set is called ω -open.

It is well known that a subset W of a topological space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open sets, denoted by τ_{ω} , is a topology on X, which is finer than τ . The interior and closure operator in (X, τ_{ω}) are denoted by int_{ω} and cl_{ω} respectively.

Lemma 2.4 ([9]). Let H be a subset of a topological space (X, τ) . Then

- (1). H is ω -closed in X if and only if $H = cl_{\omega}(H)$.
- (2). $cl_{\omega}(X \setminus H) = X \setminus int_{\omega}(H)$.
- (3). $cl_{\omega}(H)$ is ω -closed in X.
- (4). $x \in cl_{\omega}(H)$ if and only if $H \cap G \neq \phi$ for each ω -open set G containing x.
- (5). $cl_{\omega}(H) \subseteq cl(H)$.
- (6). $int(H) \subseteq int_{\omega}(H)$.

Lemma 2.5 ([11]). If A is an ω -open subset of a space (X, τ) , then A - C is ω -open for every countable subset C of X.

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

- (1). $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$ and
- (2). $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$ [12].

Given a topological space (X, τ) with an ideal \mathcal{I} on X, if $\mathbb{P}(X)$ is the set of all subsets of X, a set operator $(.)^* : \mathbb{P}(X) \to \mathbb{P}(X)$, called a local function [12] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X | U \cap A \notin \mathcal{I}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau | x \in U\}$. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I}, \tau)$, called the *-topology and finer than τ , is defined by $cl^*(A) = A \cup A^*(\mathcal{I}, \tau)$ [20]. We will simply write A^* for $A^*(\mathcal{I}, \tau)$ and τ^* for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. On the other hand, $(A, \tau_A, \mathcal{I}_A)$ where τ_A is the relative topology on A and $\mathcal{I}_A = \{A \cap J : J \in \mathcal{I}\}$ is an ideal topological subspace for the ideal topological space (X, τ, \mathcal{I}) and $A \subseteq X$ [10]. For a subset $A \subseteq X$, $cl^*(A)$ and $int^*(A)$ will, respectively, denote the closure and the interior of A in (X, τ^*) . **Proposition 2.6** ([1]). Let (X, τ, \mathcal{I}) be an ideal topological space and H a subset of X. If $\mathcal{I} = \{\phi\}$ (resp. $\mathbb{P}(X)$), then $H^* = cl(H)$ (resp. ϕ).

Lemma 2.7 ([10]). Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- (1). $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- (2). $A^* = cl(A^*) \subseteq cl(A),$
- $(3). \ (A^{\star})^{\star} \subseteq A^{\star},$
- (4). $(A \cup B)^* = A^* \cup B^*$,
- (5). $(A \cap B)^* \subseteq A^* \cap B^*$.

Definition 2.8. A subset G of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1). \mathcal{I}_g -closed [6, 14] if $G^* \subseteq H$ whenever $G \subseteq H$ and H is open in (X, τ, \mathcal{I}) .
- (2). $pre_{\mathcal{I}}^{\star}$ -open [7] if $G \subseteq int^{\star}(cl(G))$.
- (3). $pre_{\mathcal{I}}^{\star}$ -closed [7] if $X \setminus G$ is $pre_{\mathcal{I}}^{\star}$ -open (or) $cl^{\star}(int(G)) \subseteq G$.
- (4). \mathcal{I}_g - ω -closed [5] if $G^* \subseteq H$ whenever $G \subseteq H$ and H is ω -open in (X, τ, \mathcal{I}) .
- (5). \mathcal{I} -R closed [2] if $G = cl^*(int(G))$.
- (6). *-closed [10] if $G = cl^*(G)$ or $G^* \subseteq G$.

Remark 2.9 ([8]). In any ideal topological space, every \mathcal{I} -R closed set is \star -closed but not conversely.

Definition 2.10 ([15]). In an ideal topological space (X, τ, \mathcal{I}) , a subset G of X is said to be weakly \mathcal{I}_g - ω -closed if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is ω -open in X.

Example 2.11 ([15]). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}$ and $\mathcal{I} = \{\phi\}$,

- (1). For $G = \mathbb{R} \mathbb{Q}$, if H is any ω -open subset of \mathbb{R} such that $G \subseteq H$, then $(int(G))^* = \phi^* = \phi \subseteq H$ and hence G is weakly \mathcal{I}_q - ω -closed in X.
- (2). $K = \mathbb{Q} \subseteq \mathbb{Q}$, \mathbb{Q} being ω -open whereas $(int(\mathbb{Q}))^* = \mathbb{Q}^* = cl(\mathbb{Q}) = \mathbb{R} \notin \mathbb{Q}$ which implies $K = \mathbb{Q}$ is not weakly \mathcal{I}_g - ω -closed in X.

Definition 2.12 ([15]). A subset G in an ideal topological space (X, τ, \mathcal{I}) is said to be weakly \mathcal{I}_g - ω -open if X\G is weakly \mathcal{I}_g - ω -closed.

Theorem 2.13 ([15]). In an ideal topological space (X, τ, \mathcal{I}) , a subset G of X is weakly \mathcal{I}_{g} - ω -closed \Leftrightarrow $(int(G))^* \subseteq G$.

Proposition 2.14 ([15]). In an ideal topological space (X, τ, \mathcal{I}) , every \mathcal{I}_g - ω -closed set is weakly \mathcal{I}_g - ω -closed but not conversely.

Theorem 2.15 ([5]). In an ideal topological space (X, τ, \mathcal{I}) , a subset G is \star -closed if and only if it is \mathcal{I}_g - ω -closed.

Theorem 2.16 ([5]). In an ideal topological space (X, τ, \mathcal{I}) , every \mathcal{I}_{g} - ω -closed set is \mathcal{I}_{g} -closed but not conversely.

3. Properties of Weakly \mathcal{I}_q - ω -closed Sets

Theorem 3.1. In an ideal topological space (X, τ, \mathcal{I}) , for a subset G of X, the following properties are equivalent.

- (1). G is weakly \mathcal{I}_g - ω -closed;
- (2). $(int(G))^* \setminus G = \phi;$
- (3). $cl^{\star}(int(G))\backslash G = \phi;$
- (4). $cl^{\star}(int(G)) \subseteq G;$
- (5). G is $pre_{\mathcal{I}}^{\star}$ -closed.

Proof.

(1) \Leftrightarrow (2) G is weakly \mathcal{I}_g - ω -closed \Leftrightarrow $(int(G))^* \subseteq G$ by Theorem 2.13 \Leftrightarrow $(int(G))^* \setminus G = \phi$. (2) \Leftrightarrow (3) $(int(G))^* \setminus G = \phi \Leftrightarrow cl^*(int(G)) \setminus G = ((int(G))^* \cup int(G)) \setminus G = [(int(G))^* \setminus G] \cup [int(G) \setminus G] = int(G) \setminus G = \phi$.

 $(3) \Leftrightarrow (4) \ cl^{\star}(int(G)) \backslash G = \phi \Leftrightarrow cl^{\star}(int(G)) \subseteq G.$

 $(4) \Leftrightarrow (5) \ cl^{\star}(int(G)) \subseteq G \Leftrightarrow G \text{ is } pre_{\mathcal{I}}^{\star}\text{-closed by } (3) \text{ of Definition 2.8.}$

Theorem 3.2. In an ideal topological space (X, τ, \mathcal{I}) , if G is weakly \mathcal{I}_g - ω -closed, then $G \cup (X - (int(G))^*)$ is weakly \mathcal{I}_g - ω -closed.

Proof. Since G is weakly \mathcal{I}_{g} - ω -closed, $(int(G))^* \subseteq G$ by Theorem 2.13. Then $X - G \subseteq X - (int(G))^*$ and $G \cup (X - G) \subseteq G \cup (X - (int(G))^*)$. Thus $X \subseteq G \cup (X - (int(G))^*)$ and so $G \cup (X - (int(G))^*) = X$. Hence $G \cup (X - (int(G))^*)$ is weakly \mathcal{I}_{g} - ω -closed.

Theorem 3.3. In an ideal topological space (X, τ, \mathcal{I}) , the following properties are equivalent:

- (1). G is a \star -closed and an open set,
- (2). G is a \mathcal{I} -R closed and an open set,
- (3). G is a weakly \mathcal{I}_g - ω -closed and an open set.

Proof.

(1) \Rightarrow (2): Since G is \star -closed and open, $G = cl^{\star}(G)$ and G = int(G). Thus $G = cl^{\star}(int(G))$ and G = int(G). Hence G is \mathcal{I} -R closed and open.

(2) \Rightarrow (3): Since G is \mathcal{I} -R closed and open, $G = cl^*(int(G)) = (int(G))^* \cup int(G) = (int(G))^* \cup G$. Thus $(int(G))^* \subseteq G$. By Theorem 2.13, G is weakly \mathcal{I}_g - ω -closed and open.

(3) \Rightarrow (1): Since G is weakly \mathcal{I}_g - ω -closed, $(int(G))^* \subseteq G$ by Theorem 2.13. Again G is open implies $G^* = (int(G))^* \subseteq G$. Thus G is \star -closed and open.

Theorem 3.4. In an ideal topological space (X, τ, \mathcal{I}) , every closed set is weakly \mathcal{I}_g - ω -closed.

Proof. If A is closed, then A is \star -closed and \mathcal{I}_{g} - ω -closed by Theorem 2.15. By Proposition 2.14, A is weakly \mathcal{I}_{g} - ω -closed. \Box

Remark 3.5. The converse of Theorem 3.4 is not true follows from the following example.

Example 3.6. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \{1\}\}$ and the ideal $\mathcal{I} = \mathbb{P}(\mathbb{R})$, for $G = \{1\}$, if H is any ω -open subset of \mathbb{R} such that $G \subseteq H$, then $(int(G))^* = G^* = \phi \subseteq H$ and hence G is weakly \mathcal{I}_g - ω -closed. But G is not closed for $cl(G) = \mathbb{R} \notin G$.

Remark 3.7. The following example shows that the concepts of \mathcal{I}_g -closedness and weakly \mathcal{I}_g - ω -closedness are independent of each other.

Example 3.8. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{R} - \mathbb{Q}\}$ and the ideal $\mathcal{I} = \{\phi\}$,

- (1). for $G = (\mathbb{R} \mathbb{Q})_+ =$ the set of positive irrationals, $int(G) = \phi$. So $(int(G))^* = \phi^* = \phi \subseteq G$ and thus G is weakly \mathcal{I}_g - ω -closed by Theorem 2.13. But G is not \mathcal{I}_g -closed for $G \subseteq (\mathbb{R} \mathbb{Q}) \in \tau$ whereas $G^* = cl(G) = \mathbb{R} \notin \mathbb{R} \mathbb{Q}$.
- (2). for $G = (\mathbb{R} \mathbb{Q}) \cup \{1\}$, \mathbb{R} is the only open set containing G. Hence G is \mathcal{I}_g -closed. But G is not weakly \mathcal{I}_g - ω -closed for $(int(G))^* = (\mathbb{R} \mathbb{Q})^* = cl(\mathbb{R} \mathbb{Q}) = \mathbb{R} \notin G$.

Remark 3.9. In an ideal topological space (X, τ, \mathcal{I}) , the following relations hold for a subset G of X.

$$\begin{array}{ccc} closed & \longrightarrow \ weakly \ \mathcal{I}_g \text{-}\omega \text{-}closed \\ \downarrow & \uparrow \\ \star \text{-}closed & \longleftrightarrow & \mathcal{I}_g \text{-}\omega \text{-}closed & \longrightarrow \ \mathcal{I}_g \text{-}closed \end{array}$$

Where $A \leftrightarrow B$ means A implies and is implied by B and $A \rightarrow B$ means A implies B but not conversely.

Theorem 3.10. In an ideal topological space (X, τ, \mathcal{I}) , A^* is always weakly \mathcal{I}_g - ω -closed for every subset A of X.

Proof. Since $(A^*)^* \subseteq A^*$ [10], A^* is *-closed. Hence A^* is \mathcal{I}_g - ω -closed by Theorem 2.15 and weakly \mathcal{I}_g - ω -closed by Proposition 2.14.

4. Further Properties

Theorem 4.1. In an ideal topological space (X, τ, \mathcal{I}) , if G is weakly \mathcal{I}_g - ω -closed and H is a subset such that $G \subseteq H \subseteq cl^*(int(G))$, then H is weakly \mathcal{I}_g - ω -closed.

Proof. Since G is weakly \mathcal{I}_g - ω -closed, $cl^*(int(G)) \subseteq G$ by (4) of Theorem 3.1. Thus by assumption, $G \subseteq H \subseteq cl^*(int(G)) \subseteq G$. Then G = H and so H is weakly \mathcal{I}_g - ω -closed.

Corollary 4.2. Let (X, τ, \mathcal{I}) be an ideal topological space. If G is a weakly \mathcal{I}_g - ω -closed set and an open set, then $cl^*(G)$ is weakly \mathcal{I}_g - ω -closed.

Proof. Since G is open in X, $G \subseteq cl^*(G) = cl^*(int(G))$. G is weakly \mathcal{I}_g - ω -closed implies $cl^*(G)$ is weakly \mathcal{I}_g - ω -closed by Theorem 4.1.

Theorem 4.3. In an ideal topological space (X, τ, \mathcal{I}) , a nowhere dense subset is weakly \mathcal{I}_g - ω -closed.

Proof. If G is a nowhere dense subset in X then $int(cl(G)) = \phi$. Since $int(G) \subseteq int(cl(G))$, $int(G) = \phi$. Hence $(int(G))^* = \phi^* = \phi \subseteq G$. Thus, G is weakly \mathcal{I}_g - ω -closed in (X, τ, \mathcal{I}) by Theorem 2.13.

Remark 4.4. The converse of Theorem 4.3 is not true in general as shown in the following example.

Example 4.5. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{R} - \mathbb{Q}\}$ and $\mathcal{I} = \mathbb{P}(\mathbb{R})$, for $G = \mathbb{R} - \mathbb{Q}$, $(int(G))^* = G^* = \phi \subseteq G$. Hence $G = \mathbb{R} - \mathbb{Q}$ is weakly \mathcal{I}_g - ω -closed by Theorem 2.13. On the other hand, $int(cl(G)) = int(\mathbb{R}) = \mathbb{R} \neq \phi$ and thus $G = \mathbb{R} - \mathbb{Q}$ is not nowhere dense in X.

Remark 4.6. In an ideal topological space (X, τ, \mathcal{I}) , the intersection of two weakly \mathcal{I}_{q} - ω -closed subsets is weakly \mathcal{I}_{q} - ω -closed.

Proof. Let A and B be weakly \mathcal{I}_g - ω -closed subsets in (X, τ, \mathcal{I}) . Then $(int(A))^* \subseteq A$ and $(int(B))^* \subseteq B$ by Theorem 2.13. Also $[int(A \cap B)]^* \subseteq [int(A)]^* \cap [int(B)]^* \subseteq A \cap B$. This implies that $A \cap B$ is weakly \mathcal{I}_g - ω -closed by Theorem 2.13.

Remark 4.7. In an ideal topological space (X, τ, \mathcal{I}) , the union of two weakly \mathcal{I}_g - ω -closed subsets need not be weakly \mathcal{I}_g - ω -closed.

Example 4.8. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{R} - \mathbb{Q}\}$ and ideal $\mathcal{I} = \{\phi\}$, for $A = (\mathbb{R} - \mathbb{Q})_+ =$ the set of positive irrationals and $B = (\mathbb{R} - \mathbb{Q})_- =$ the set of negative irrationals, $int(A) = \phi$ and $int(B) = \phi$ respectively. So $(int(A))^* = \phi^* = \phi \subseteq A$ and thus A is weakly \mathcal{I}_g - ω -closed by Theorem 2.13. Similarly B is also weakly \mathcal{I}_g - ω -closed. But $int(A \cup B) = int(\mathbb{R} - \mathbb{Q}) = \mathbb{R} - \mathbb{Q}$. So $[int(A \cup B)]^* = (\mathbb{R} - \mathbb{Q})^* = cl(\mathbb{R} - \mathbb{Q}) = \mathbb{R} \not\subseteq \mathbb{R} - \mathbb{Q} = A \cup B$. Hence $A \cup B$ is not weakly \mathcal{I}_g - ω -closed.

Theorem 4.9. In an ideal topological space (X, τ, \mathcal{I}) , a subset G is weakly \mathcal{I}_q - ω -open if and only if $G \subseteq int^*(cl(G))$.

Proof. G is weakly \mathcal{I}_g - ω -open $\Leftrightarrow X \setminus G$ is weakly \mathcal{I}_g - ω -closed $\Leftrightarrow X \setminus G$ is $pre_{\mathcal{I}}^{\star}$ -closed by (5) of Theorem 3.1 $\Leftrightarrow G$ is $pre_{\mathcal{I}}^{\star}$ -open $\Leftrightarrow G \subseteq int^{\star}(cl(G))$.

Theorem 4.10. In an ideal topological space (X, τ, \mathcal{I}) , if the subset G is weakly \mathcal{I}_g - ω -closed, then $cl^*(int(G))\backslash G$ is weakly \mathcal{I}_g - ω -open in (X, τ, \mathcal{I}) .

Proof. Since G is weakly \mathcal{I}_g - ω -closed, $cl^*(int(G))\setminus G = \phi$ by (3) of Theorem 3.1. Thus $cl^*(int(G))\setminus G$ is weakly \mathcal{I}_g - ω -open in (X, τ, \mathcal{I}) .

Theorem 4.11. In an ideal topological space (X, τ, \mathcal{I}) , if G is weakly \mathcal{I}_{g} - ω -open, then $int^{\star}(cl(G)) \cup (X - G) = X$.

Proof. Since G is weakly \mathcal{I}_{g} - ω -open, $G \subseteq int^{*}(cl(G))$ by Theorem 4.9. So $(X - G) \cup G \subseteq (X - G) \cup int^{*}(cl(G))$ which implies $X = (X - G) \cup int^{*}(cl(G))$.

Theorem 4.12. In an ideal topological space (X, τ, \mathcal{I}) , if G is weakly \mathcal{I}_g - ω -open and H is a subset such that $int^*(cl(G)) \subseteq H \subseteq G$, then H is weakly \mathcal{I}_g - ω -open.

Proof. Since G is weakly \mathcal{I}_{g} - ω -open, $G \subseteq int^{*}(cl(G))$ by Theorem 4.9. By assumption $int^{*}(cl(G)) \subseteq H \subseteq G$. This implies $G \subseteq int^{*}(cl(G)) \subseteq H \subseteq G$. Thus G = H and so H is weakly \mathcal{I}_{g} - ω -open.

Corollary 4.13. In an ideal topological space (X, τ, \mathcal{I}) , if G is a weakly \mathcal{I}_g - ω -open set and a closed set, then $int^*(G)$ is weakly \mathcal{I}_g - ω -open.

Proof. Let G be a weakly \mathcal{I}_g - ω -open set and a closed set in (X, τ, \mathcal{I}) . Then $int^*(cl(G)) = int^*(G) \subseteq int^*(G) \subseteq G$. Thus, by Theorem 4.12, $int^*(G)$ is weakly \mathcal{I}_g - ω -open in (X, τ, \mathcal{I}) .

Definition 4.14. A subset H of an ideal topological space (X, τ, \mathcal{I}) is called a $W_{\mathcal{I}}$ -set if $H = M \cup N$ where M is ω -closed and N is $pre_{\mathcal{I}}^*$ -open.

Proposition 4.15. Every $pre_{\mathcal{I}}^{\star}$ -open (resp. ω -closed) set is a $W_{\mathcal{I}}$ -set.

Remark 4.16. The separate converses of Proposition 4.15 are not true in general as shown in the following example.

Example 4.17.

(1). Let \mathbb{R}, τ and \mathcal{I} be as in Example 2.11 and $G = \mathbb{R} - \mathbb{Q}$. Since G is closed, it is ω -closed and hence a $W_{\mathcal{I}}$ -set. But $int^*(cl(G)) = int^*(G) = \mathbb{R} \setminus cl^*(\mathbb{Q}) = \mathbb{R} \setminus \mathbb{R} = \phi \not\supseteq G$. Hence $G = \mathbb{R} - \mathbb{Q}$ is not $pre^*_{\mathcal{I}}$ -open.

(2). In Example 4.5, for $G = \mathbb{R} - \mathbb{Q}$, $int^*(cl(G)) = int^*(\mathbb{R}) = \mathbb{R} \supseteq G$. Thus G is $pre_{\mathcal{I}}^*$ -open and hence a $W_{\mathcal{I}}$ -set. But G is not ω -closed for any $x \in \mathbb{Q}$ is a condensation point of G and $x \notin G$.

Remark 4.18. The following example shows that the concepts of $pre_{\mathcal{I}}^{\star}$ -openness and ω -closedness are independent of each other.

Example 4.19. In Example 4.17(1), $G = \mathbb{R} - \mathbb{Q}$ is ω -closed but not $pre_{\mathcal{I}}^{\star}$ -open.

In Example 4.17(2), $G = \mathbb{R} - \mathbb{Q}$ is $pre_{\mathcal{I}}^{\star}$ -open but not ω -closed.

References

- A.Acikgoz, T.Noiri and S.Yuksel, On α-*I*-continuous and α-*I*-open functions, Acta Math. Hungar., 105(1-2)(2004), 27-37.
- [2] A.Acikgoz and S.Yuksel, Some new sets and decompositions of A_{I-R}-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79-89.
- [3] A.Al-Omari and M.S.M.Noorani, Contra-ω-continuous and Almost contra-ω-continuous, Intern. J. Math. Math. Sci., 2007(2007), Artical ID 40469, 13 Pages.
- [4] A.Al-Omari and M.S.M.Noorani, Regular generalized ω-closed sets, Intern. J. Math. Math. Sci., 2007(2007), Article ID 16292, 11 Pages.
- [5] K.Banumathi, R.Premkumar and O.Ravi, \mathcal{I}_{g} - ω -closed sets, Submitted.
- [6] J.Dontchev, M.Ganster and T.Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [7] E.Ekici, On $\mathcal{AC}_{\mathcal{I}}$ -sets, $\mathcal{BC}_{\mathcal{I}}$ -sets, $\beta_{\mathcal{I}}^{\star}$ -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(2011), 47-54.
- [8] E.Ekici and S.Ozen, A generalized class of τ^* in ideal spaces, Filomat, 27(4)(2013), 529-535.
- [9] H.Z.Hdeib, ω-closed mappings, Revista Colomb. De Matem., 16(1-2)(1982), 65-78.
- [10] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [11] Khalid Y.Al-Zoubi, On generalized ω-closed sets, Intern. J. Math. Math. Sci., 13(2005), 2011-2021.
- [12] K.Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- [13] N.Levine, Generalized closed sets in topology, Rend. Cir. Math. Palermo, 19(2)(1970), 89-96.
- [14] M.Navaneethakrishnan and J.Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
- [15] O.Nethaji, I.Rajasekaran and O.Ravi, Mildly \mathcal{I}_{g} - ω -closed sets, Submitted.
- [16] T.Noiri, A.Al-Omari and M. S.M.Noorani, Weak forms of ω-open sets and decompositions of continuity, Eur. J. Pure Appl. Math., 2(1)(2009), 73-84.
- [17] J.K.Park and J.H.Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitons and Fractals, 20(2004), 1103-1111.
- [18] P.Sundaram and N.Nagaveni, On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces, Far East J. Math. Sci., 6(6)(1998), 903-1012.
- [19] P.Sundaram and A.Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci., 3(4)(2001), 563-575.
- [20] R.Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).

[21] S.Willard, General Topology, Addison-Wesley, Reading, Mass, USA, (1970).