ISSN: 2394-5745

Available Online: http://ijcrst.in/

International Journal of Current Research in Science and Technology

Strongly g- \star -closed Sets

Research Article

R.Umamaheswari¹, R.Premkumar¹ and O.Ravi^{1*}

1 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

Abstract: In this paper, the notion of strongly g-**-closed sets is introduced in ideal topological spaces. Characterizations and properties of strongly g-**-closed sets and strongly g-**-open sets are given. A characterization of normal spaces is given in

terms of strongly g- \star -open sets. Also it is established that a strongly g- \star -closed subset of an \mathcal{I} -compact space is \mathcal{I} -compact.

MSC: 54A05, 54A10.

Keywords: Strongly g- \star -closed set, strongly \mathcal{I}_g - \star -closed set, \star -g-closed set, \mathcal{I} -compact space.

© JS Publication.

1. Introduction and Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $H \subseteq X$, cl(H) and int(H) will, respectively, denote the closure and interior of H in (X, τ) .

Example 1.1. A subset H of a space (X, τ) is called semi-open [8] if $H \subseteq cl(int(H))$.

Definition 1.2. A subset H of a space (X, τ) is said to be g-closed [9] if $cl(H)\subseteq U$ whenever $H\subseteq U$ and U is open in X.

An ideal \mathcal{I} on a space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$ [7]. Given a space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [7] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [[6], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I},\tau)$, called the \star -topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I},\tau)$ [14]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I},\tau)$ and τ^* for $\tau^*(\mathcal{I},\tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space.

Lemma 1.3 ([6]). Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- (1) $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- (2) $A^* = cl(A^*) \subseteq cl(A)$,
- $(3) (A^*)^* \subseteq A^*,$
- $(4) (A \cup B)^* = A^* \cup B^*,$

^{*} E-mail: siingam@yahoo.com

 $(5) (A \cap B)^* \subseteq A^* \cap B^*$.

Definition 1.4. A subset H of an ideal topological space (X, τ, \mathcal{I}) is called \star -closed [6] (resp. \star -dense in itself [5]) if $H^* \subseteq H$ (resp. $H \subseteq H^*$). The complement of a \star -closed set is called \star -open.

Definition 1.5. A subset H of an ideal topological space (X, τ, \mathcal{I}) is called \mathcal{I}_g -closed [2, 11] if $H^* \subseteq U$ whenever $H \subseteq U$ and U is open in (X, τ, \mathcal{I}) .

Definition 1.6 ([2]). An ideal topological space (X, τ, \mathcal{I}) is called $T_{\mathcal{I}}$ if every \mathcal{I}_g -closed subset of X is \star -closed in X.

Lemma 1.7. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ space and $A \subseteq X$ is an \mathcal{I}_q -closed set, then A is a \star -closed set [[11], Corollary 2.2].

Lemma 1.8. In an ideal topological space (X, τ, \mathcal{I}) , every g-closed set is \mathcal{I}_g -closed but not conversely [[2], Theorem 2.1].

Definition 1.9 ([10]). A subset H of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1) \star -g-closed if $cl(H)\subseteq U$ whenever $H\subseteq U$ and U is \star -open in (X, τ, \mathcal{I}) ,
- (2) \star -g-open if its complement is \star -g-closed.

Recall that every open set is \star -g-open but not conversely.

Proposition 1.10 ([1]). If A is \star -g-closed of (X, τ, \mathcal{I}) and B is closed in X, then $A \cap B$ is \star -g-closed in (X, τ, \mathcal{I}) .

Definition 1.11 ([1]). A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1) strongly \mathcal{I}_g - \star -closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is \star -g-open in (X, τ, \mathcal{I}) .
- (2) strongly \mathcal{I}_g -*-open if its complement is strongly \mathcal{I}_g -*-closed.

Theorem 1.12 ([1]). In an ideal topological space (X, τ, \mathcal{I}) , for $A \subseteq X$, the following statements are equivalent.

- (1) A is strongly \mathcal{I}_g - \star -closed,
- (2) $cl^*(A)\subseteq U$ whenever $A\subseteq U$ and U is \star -g-open in X,
- (3) $cl^*(A)-A$ contains no nonempty \star -g-closed set,
- (4) A^*-A contains no nonempty \star -g-closed set.

Theorem 1.13 ([1]). Let (X, τ, \mathcal{I}) be an ideal topological space. If A and B are subsets of X such that $A \subseteq B \subseteq cl^*(A)$ and A is strongly \mathcal{I}_q - \star -closed, then B is strongly \mathcal{I}_q - \star -closed.

Definition 1.14. An ideal \mathcal{I} is said to be codense [3] or τ -boundary [12] if $\tau \cap \mathcal{I} = \{\phi\}$.

Theorem 1.15 ([1]). In an ideal topological space (X, τ, \mathcal{I}) , every \star -closed set is strongly \mathcal{I}_g - \star -closed but not conversely.

Theorem 1.16 ([1]). In an ideal topological space (X, τ, \mathcal{I}) , every strongly \mathcal{I}_q - \star -closed set is \mathcal{I}_q -closed but not conversely.

Lemma 1.17. Let (X, τ, \mathcal{I}) be an ideal topological space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X [[13], Theorem 3].

Lemma 1.18. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$ [[13], Theorem 5].

Definition 1.19. A subset H of an ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I} -compact [4] or compact modulo \mathcal{I} [12] if for every open cover $\{U_{\alpha} \mid \alpha \in \Delta\}$ of H, there exists a finite subset Δ_0 of Δ such that $H - \cup \{U_{\alpha} \mid \alpha \in \Delta_0\} \in \mathcal{I}$. The space (X, τ, \mathcal{I}) is \mathcal{I} -compact if X is \mathcal{I} -compact as a subset.

Theorem 1.20. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an \mathcal{I}_g -closed subset of X, then A is \mathcal{I} -compact [[11], Theorem 2.17].

2. Properties of Strongly *q*-*-closed Sets

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1) strongly g- \star -closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \star -g-open in X,
- (2) strongly g- \star -open if its complement is strongly g- \star -closed.

Theorem 2.2. In an ideal topological space (X, τ, \mathcal{I}) , every strongly g- \star -closed set is g-closed.

Proof. It follows from the fact that every open set is \star -g-open.

The converses of Theorem 2.2 is not true in general as shown in the following example.

Example 2.3. Let $X=\{a, b, c\}$, $\tau=\{\phi, X, \{a\}, \{b, c\}\}$ and $\mathcal{I}=\{\phi, \{a\}\}$. Then strongly g-*-closed sets are ϕ , X, $\{a\}$, $\{b, c\}$ and g-closed sets are ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$. Clearly $\{b\}$ is g-closed but not strongly g-*-closed.

The following Theorem gives characterizations of strongly g- \star -closed sets.

Theorem 2.4. In an ideal topological space (X, τ, \mathcal{I}) , for $A \subseteq X$, the following statements are equivalent.

- (1) A is strongly g- \star -closed,
- (2) $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \star -g-open in X,
- (3) cl(A) A contains no nonempty \star -g-closed set.

Proof.

- (1) \Rightarrow (2) Let $A \subseteq U$ where U is \star -g-open in X. Since A is strongly g- \star -closed, $cl(A) \subseteq U$.
- (2) \Rightarrow (3) Let F be a \star -g-closed subset such that $F \subseteq cl(A) A$. Then $F \subseteq cl(A)$. Also $F \subseteq cl(A) A \subseteq X A$ and hence $A \subseteq X F$ where X F is \star -g-open. By (2) $cl(A) \subseteq X F$ and so $F \subseteq X cl(A)$. Thus $F \subseteq cl(A) \cap (X cl(A)) = \phi$.
- $(3) \Rightarrow (1) \text{ Let } A \subseteq U \text{ where } U \text{ is } \star \text{-} g \text{-open in } X. \text{ Then } X U \subseteq X A \text{ and so } cl(A) \cap (X U) \subseteq cl(A) \cap (X A) = cl(A)$
- A. Since cl(A) is always a closed subset and X U is \star -g-closed, $cl(A) \cap (X U)$ is a \star -g-closed set contained in cl(A)
- A and hence $cl(A) \cap (X U) = \phi$ by (3). Thus $cl(A) \subseteq U$ and A is strongly g-*-closed.

Theorem 2.5. Every closed set is strongly g- \star -closed.

Proof. Let A be closed. To prove A is strongly g- \star -closed, let U be any \star -g-open subset such that A \subseteq U. Since A is closed, $cl(A) \subseteq A \subseteq U$. Thus A is strongly g- \star -closed.

The converse of Theorem 2.5 is not true in general as shown in the following example.

Example 2.6. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{d\}, \{a, c\}, \{a, c, d\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{d\}, \{a, d\}\}\}$. Then strongly $g \rightarrow closed$ sets are ϕ , X, $\{b\}$, $\{a, b\}$, $\{b, c\}$, $\{b, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c, d\}$ and closed sets are ϕ , X, $\{b\}$, $\{b, d\}$, $\{a, b, c\}$. Clearly $\{b, c\}$ is strongly $g \rightarrow closed$ but not closed.

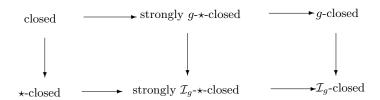
Theorem 2.7. In an ideal topological space (X, τ, \mathcal{I}) , A^* is always strongly g - \star -closed for every subset A of X .
<i>Proof.</i> Let A*⊆U where U is \star -g-open in X. Since A* is closed, cl(A*)⊆A*⊆U. Hence A* is strongly g- \star -closed.
Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every strongly g - \star -closed, \star - g -open set is closed.
<i>Proof.</i> Let A be strongly g - \star -closed and \star - g -open. We have $A \subseteq A$ where A is \star - g -open. Since A is strongly g - \star -closed $cl(A) \subseteq A$. Thus A is closed.
Corollary 2.9. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ space and A is a strongly g - \star -closed set, then A is \star -closed set.
<i>Proof.</i> By assumption A is strongly g - \star -closed in (X, τ, \mathcal{I}) and so by Theorem 2.2, A is g -closed and hence \mathcal{I}_g -closed by Lemma 1.8. Since (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space, by Definition 1.6, A is \star -closed.
Corollary 2.10. Let A be a strongly g- \star -closed set in (X, τ, \mathcal{I}) . Then the following are equivalent.
(1) A is a closed set,
(2) $cl(A) - A$ is a \star -g-closed set.
Proof. (1) \Rightarrow (2) By (1) A is closed. Hence $cl(A) \subseteq A$ and $cl(A) - A = \phi$ which is a \star -g-closed set. (2) \Rightarrow (1) Since A is strongly g- \star -closed, by Theorem 2.4(3), $cl(A) - A$ contains no non-empty \star -g-closed set. By assumption (2), $cl(A) - A$ is \star -g-closed and hence $cl(A) - A = \phi$. Thus $cl(A) \subseteq A$ and hence A is closed.
Theorem 2.11. In an ideal topological space (X, τ, \mathcal{I}) , every strongly g - \star -closed set is strongly \mathcal{I}_g - \star -closed.
<i>Proof.</i> Let A be a strongly g - \star -closed set. Let U be any \star - g -open set such that $A \subseteq U$. Since A is strongly g - \star -closed $cl(A) \subseteq U$. So, $A^* \subseteq A \cup A^* = cl^*(A) \subseteq cl(A) \subseteq U$ and thus A is strongly \mathcal{I}_g - \star -closed.
The converse of Theorem 2.11 is not true in general as shown in the following example.
Example 2.12. In Example 2.6, strongly \mathcal{I}_g - \star -closed sets are ϕ , X , $\{a\}$, $\{b\}$, $\{d\}$, $\{a, b\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{a, b, c\}$ $\{a, b, d\}$, $\{b, c, d\}$. Clearly $\{a\}$ is strongly \mathcal{I}_g - \star -closed but not strongly g - \star -closed.
Theorem 2.13. If (X, τ, \mathcal{I}) is an ideal topological space and A is a \star -dense in itself, strongly \mathcal{I}_g - \star -closed subset of X , then A is strongly g - \star -closed.
<i>Proof.</i> Let $A \subseteq U$ where U is \star -g-open in X. Since A is strongly \mathcal{I}_g - \star -closed, $A^* \subseteq U$. As A is \star -dense in itself, by Lemma 1.18, $cl(A) = A^*$. Thus $cl(A) \subseteq U$ and hence A is strongly g - \star -closed.
Corollary 2.14. If (X, τ, \mathcal{I}) is any ideal topological space where $\mathcal{I} = \{\phi\}$, then A is strongly \mathcal{I}_g -*-closed in X if and only if A is strongly g -*-closed in X.
<i>Proof.</i> In (X, τ, \mathcal{I}) , if $\mathcal{I} = \{\phi\}$ then $A^* = cl(A)$ for the subset A. A is strongly \mathcal{I}_g -*-closed in $X \Leftrightarrow A^* \subseteq U$ whenever $A \subseteq U$ and U is *-g-open in $X \Leftrightarrow cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *-g-open in $X \Leftrightarrow A$ is strongly g -*-closed in X .
Corollary 2.15. In an ideal topological space (X, τ, \mathcal{I}) where \mathcal{I} is codense, if A is a semi-open and strongly \mathcal{I}_g - \star -closed subset of X , then A is strongly g - \star -closed.
<i>Proof.</i> By Lemma 1.17, A is ★-dense in itself. By Theorem 2.13, A is strongly g-★-closed.

Example 2.16. In Example 2.3, strongly \mathcal{I}_g - \star -closed sets are ϕ , X, $\{a\}$, $\{b, c\}$ and g-closed sets are ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$. Clearly $\{b\}$ is g-closed but not strongly \mathcal{I}_g - \star -closed.

Example 2.17. In Example 2.6, g-closed sets are ϕ , X, $\{b\}$, $\{a, b\}$, $\{b, c\}$, $\{b, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c, d\}$. Clearly $\{a\}$ is strongly \mathcal{I}_g -*-closed but not g-closed.

Remark 2.18. We see that from Examples 2.16 and 2.17, g-closed sets and strongly \mathcal{I}_g \star -closed sets are independent.

Remark 2.19. We have the following implications for the subsets stated above.



Theorem 2.20. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is strongly g- \star -closed if and only if A = F - N where F is closed and N contains no nonempty \star -g-closed set.

Proof. If A is strongly g-*-closed, then by Theorem 2.4 (3), N=cl(A) − A contains no nonempty *-g-closed set. If F=cl(A), then F is closed such that F−N = (A∪cl(A))-(cl(A)−A)=(A∪cl(A))∩(cl(A)∩ A^c) c =(A∪cl(A))∩((cl(A)) c)=A∪(cl(A))∩(A∪(cl(A)) c)=A∪(cl(A)) c)=A.

Conversely, suppose A = F - N where F is closed and N contains no nonempty \star -g-closed set. Let U be an \star -g-open set such that $A \subseteq U$. Then $F - N \subseteq U$ which implies that $F \cap (X - U) \subseteq N$. Now $A \subseteq F$ and $cl(F) \subseteq F$ then $cl(A) \subseteq cl(F)$ and so $cl(A) \cap (X - U) \subseteq cl(F) \cap (X - U) \subseteq F \cap (X - U) \subseteq N$. Since $cl(A) \cap (X - U)$ is \star -g-closed, by hypothesis $cl(A) \cap (X - U) = \phi$ and so $cl(A) \subseteq U$. Hence A is strongly g- \star -closed.

Theorem 2.21. Let (X, τ, \mathcal{I}) be an ideal topological space. If A and B are subsets of X such that $A \subseteq B \subseteq cl(A)$ and A is strongly g-*-closed, then B is strongly g-*-closed.

Proof. Since A is strongly g-*-closed, then by Theorem 2.4(3), cl(A)-A contains no nonempty *-g-closed set. But cl(B)-B \subseteq cl(A)-A and so cl(B)-B contains no nonempty *-g-closed set. Hence B is strongly g-*-closed.

Corollary 2.22. Let (X, τ, \mathcal{I}) be an ideal topological space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is strongly $\mathcal{I}_g \text{-}\star\text{-}closed$, then A and B are strongly $g\text{-}\star\text{-}closed$ sets.

Proof. Let A and B be subsets of X such that $A \subseteq B \subseteq A^*$. Then $A \subseteq B \subseteq A^* \subseteq A^* \cup A = cl^*(A)$. Since A is strongly \mathcal{I}_g - \star -closed, by Theorem 1.13, B is strongly \mathcal{I}_g - \star -closed. Since $A \subseteq B \subseteq A^*$, we have $A^* = B^*$. Hence $A \subseteq A^*$ and $B \subseteq B^*$. Thus A is \star -dense in itself and B is \star -dense in itself and by Theorem 2.13, A and B are strongly g- \star -closed.

The following Theorem gives a characterization of strongly g- \star -open sets.

Theorem 2.23. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is strongly g- \star -open if and only if $F \subseteq int(A)$ whenever F is \star -g-closed and $F \subseteq A$.

Proof. Suppose A is strongly g-*-open. If F is *-g-closed and F \subseteq A, then X $-A\subseteq$ X-F and so $cl(X-A)\subseteq$ X-F by Theorem 2.4(2). Therefore F \subseteq X-cl(X-A)=int(A). Hence F \subseteq int(A).

Conversely, suppose the condition holds. Let U be an \star -g-open set such that $X-A\subseteq U$. Then $X-U\subseteq A$ and so $X-U\subseteq \operatorname{int}(A)$. Therefore $\operatorname{cl}(X-A)\subseteq U$. By Theorem 2.4(2), X-A is strongly $g-\star$ -closed. Hence A is strongly $g-\star$ -open.

Corollary 2.24. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If A is strongly g-*-open, then $F \subseteq int(A)$ whenever F is closed and $F \subseteq A$.

The following Theorem gives a property of strongly g- \star -closed.

Theorem 2.25. Let (X, τ, \mathcal{I}) be an ideal topological space and $A,B\subseteq X$. If A is strongly g- \star -open and $int(A)\subseteq B\subseteq A$, then B is strongly g- \star -open.

Proof. Since $int(A) \subseteq B \subseteq A$, we have $X - A \subseteq X - B \subseteq X - int(A) = cl(X - A)$. By assumption A is strongly g-*-open and so X - A is strongly g-*-closed. Hence by Theorem 2.21, X - B is strongly g-*-closed and B is strongly g-*-open. \square

The following Theorem gives a characterization of strongly g- \star -closed sets in terms of strongly g- \star -open sets.

Theorem 2.26. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then the following are equivalent.

- (1) A is strongly g- \star -closed,
- (2) $A \cup (X-cl(A))$ is strongly $g \rightarrow closed$,
- (3) cl(A)-A is strongly $g-\star$ -open.

Proof.

- (1) \Rightarrow (2). Suppose A is strongly g- \star -closed. If U is any \star -g-open set such that $(A \cup (X cl(A))) \subseteq U$, then $X U \subseteq X (A \cup (X cl(A))) = [A \cup (cl(A))^c]^c = cl(A) \cap A^c = cl(A) A$. Since A is strongly g- \star -closed, by Theorem 2.4(3), it follows that $X U = \phi$ and so X = U. Since X is the only \star -g-open set containing $A \cup (X cl(A))$, clearly, $A \cup (X cl(A))$ is strongly g- \star -closed.
- (2) \Rightarrow (1). Suppose $A \cup (X cl(A))$ is strongly g *-closed. If F is any *-g-closed set such that $F \subseteq cl(A) A = X (A \cup (X cl(A)))$, then $A \cup (X cl(A)) \subseteq X F$ and X F is *-g-open. Therefore, $cl(A \cup (X cl(A))) \subseteq X F$ which implies that $cl(A) \subseteq cl(A) \cup cl(X cl(A)) = cl(A \cup (X cl(A))) \subseteq X F$ and so $F \subseteq X cl(A)$. Since $F \subseteq cl(A)$, it follows that $F = \phi$. Hence A is strongly g *-closed by Theorem 2.4(3).

The equivalence of (2) and (3) follows from the fact that $X-(cl(A)-A)=A\cup(X-cl(A))$.

Theorem 2.27. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every subset of X is strongly g- \star -closed if and only if every \star -g-open set is closed.

Proof. Suppose every subset of X is strongly g- \star -closed. Let U be any \star -g-open in X. Then U \subseteq U and U is strongly g- \star -closed by assumption implies $cl(U) \subseteq U$. Hence U is closed.

Conversely, let $A \subseteq X$ and U be any \star -g-open such that $A \subseteq U$. Since U is closed by assumption, we have $cl(A) \subseteq cl(U) \subseteq U$. Thus A is strongly g- \star -closed.

The following Theorem gives a characterization of normal spaces in terms of strongly g- \star -open sets.

Theorem 2.28. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following are equivalent.

- (1) X is normal,
- (2) For any disjoint closed sets A and B, there exist disjoint strongly g-*-open sets U and V such that $A \subseteq U$ and $B \subseteq V$,
- (3) For any closed set A and open set V containing A, there exists a strongly $g-\star$ -open set U such that $A \subseteq U \subseteq cl(U) \subseteq V$.

Proof.

- (1) \Rightarrow (2) The proof follows from the fact that every open set is strongly g- \star -open.
- $(2)\Rightarrow(3)$ Suppose A is closed and V is an open set containing A. Since A and X-V are disjoint closed sets, there exist disjoint strongly g- \star -open sets U and W such that $A\subseteq U$ and X-V \subseteq W. Since X-V is \star -g-closed and W is strongly g- \star -open, X-V \subseteq int(W). Then X-int(W) \subseteq V. Again U \cap W= ϕ which implies that U \cap int(W)= ϕ and so U \subseteq X-int(W). Then $cl(U)\subseteq X$ -int(W) $\subseteq V$ and thus U is the required strongly g- \star -open set with $A\subseteq U\subseteq cl(U)\subseteq V$.
- $(3)\Rightarrow(1)$ Let A and B be two disjoint closed subsets of X. Then A is a closed set and X-B an open set containing A. By hypothesis, there exists a strongly g- \star -open set U such that $A\subseteq U\subseteq cl(U)\subseteq X$ -B. Since U is strongly g- \star -open and A is \star -g-closed we have $A\subseteq int(U)$. Hence $A\subseteq int(U)$ =G and $B\subseteq X$ -cl(U)=H. G and H are the required disjoint open sets containing A and B respectively, which proves (1).

Corollary 2.29. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is a strongly g- \star -closed subset of X, then A is \mathcal{I} -compact.

Proof. The proof follows from the fact that every strongly g- \star -closed set is g-closed by Theorem 2.2 and hence \mathcal{I}_g -closed by Lemma 1.8. By Theorem 1.20, A is \mathcal{I} -compact.

3. $\star\star$ -g- \mathcal{I} -locally closed Sets

Definition 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called a $\star\star$ -g- \mathcal{I} -locally closed set (briefly, $\star\star$ -g- \mathcal{I} -LC) if $A = U \cap V$ where U is \star -g-open and V is closed.

Definition 3.2 ([1]). A subset A of an ideal topological space (X, τ, \mathcal{I}) is called a \star -g- \mathcal{I} -locally closed set (briefly, \star -g- \mathcal{I} -LC) if $A = U \cap V$ where U is \star -g-open and V is \star -closed.

Proposition 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space and A a subset of X. Then the following hold.

- (1) If A is closed, then A is $\star\star$ -g- \mathcal{I} -LC-set.
- (2) If A is \star -q-open, then A is $\star\star$ -q- \mathcal{I} -LC-set.
- (3) If A is a $\star\star$ -g- \mathcal{I} -LC-set, then A is a \star -g- \mathcal{I} -LC-set.

The converses of Proposition 3.3 need not be true as shown in the following Examples.

Example 3.4.

- (1) In Example 2.6, ★★-g-I-LC-sets are φ, X, {b}, {c}, {d}, {a, c}, {b, d}, {c, d}, {a, b, c}, {a, c, d} and closed sets are φ, X, {b}, {b, d}, {a, b, c}. Clearly {c} is a ★★-g-I-LC-set but it is not closed.
- (2) In Example 2.6, \star -g-open sets are ϕ , X, $\{c\}$, $\{d\}$, $\{a, c\}$, $\{c, d\}$, $\{a, c, d\}$. Clearly $\{b\}$ is a $\star\star$ -g- \mathcal{I} -LC-set but it is not \star -g-open.

Example 3.5. In Example 2.6, \star -g- \mathcal{I} -LC-sets are ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$. Clearly $\{a\}$ is a \star -g- \mathcal{I} -LC-set but it is not a \star -g- \mathcal{I} -LC-set.

Theorem 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is a $\star\star$ -g- \mathcal{I} -LC-set and B is a closed set, then $A\cap B$ is a $\star\star$ -g- \mathcal{I} -LC-set.

Proof. Let B be closed, then $A \cap B = (U \cap V) \cap B = U \cap (V \cap B)$, where $V \cap B$ is closed. Hence $A \cap B$ is a **-g-\mathcal{I}-LC-set.

Theorem 3.7. A subset of an ideal topological space (X, τ, \mathcal{I}) is closed if and only if it is $\star\star$ -g- \mathcal{I} -LC and strongly g- \star -closed.

Proof. Necessity is trivial. We prove only sufficiency. Let A be $\star\star$ -g-\mathcal{I}-LC-set and strongly g-\strongly g-\tau-closed set. Since A is $\star\star$ -g-\mathcal{I}-LC, A=U∩V, where U is \strongly g-\tau-closed. So, we have A=U∩V⊆U. Since A is strongly g-\strongly -closed, cl(A) ⊆ U. Also since A = U∩V⊆V and V is closed, we have cl(A) ⊆ V. Consequently, cl(A) ⊆ U∩V = A and hence A is closed. □

Remark 3.8. The notions of $\star\star$ -q- \mathcal{I} -LC-set and strongly q- \star -closed set are independent.

Example 3.9. In Example 2.6, clearly $\{c\}$ is a $\star\star$ -g- \mathcal{I} -LC-set but not strongly g- \star -closed.

Example 3.10. In Example 2.6, clearly $\{b, c\}$ is strongly $g-\star$ -closed but not a $\star\star$ - $g-\mathcal{I}$ -LC-set.

4. Decomposition of Continuity

Definition 4.1. A function $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is said to be $\star\star -g-\mathcal{I}-LC$ -continuous (resp. strongly $g-\star$ -continuous) if $f^{-1}(A)$ is $\star\star -g-\mathcal{I}-LC$ -set (resp. strongly $\mathcal{I}_g-\star$ -closed) in (X, τ, \mathcal{I}) for every closed set A of (Y, σ) .

Theorem 4.2. A function $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is continuous if and only if it is $\star\star -g-\mathcal{I}-LC$ -continuous and strongly $g-\star$ -continuous.

Proof. It is an immediate consequence of Theorem 3.7.

References

- [1] V.P.Anuja, R.Premkumar and O.Ravi, Strongly \mathcal{I}_g - \star -closed sets, International Journal of Current Research in Science and Technology, 3(1)(2017), 1-9.
- [2] J.Dontchev, M.Ganster and T.Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [3] J.Dontchev, M.Ganster and D.Rose, *Ideal resolvability*, Topology and its Applications, 93(1999), 1-16.
- [4] T.R.Hamlett and D.Jankovic, Compactness with respect to an ideal, Boll. U. M. I., 7(4-B)(1990), 849-861.
- [5] E.Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [6] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [7] K.Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- [8] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [9] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [10] D.Mandal and M.N.Mukherjee, Certain new classes of generalized closed sets and their applications in ideal topological spaces, Filomat, 29(5)(2015), 1113-1120.
- [11] M.Navaneethakrishnan and J.Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
- [12] R.L.Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
- [13] V.Renuka Devi, D.Sivaraj and T.Tamizh Chelvam, Codense and Completely codense ideals, Acta Math. Hungar., 108(2005), 197-205.
- [14] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).