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1. Introduction and Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If H⊆X, cl(H) and int(H)

will, respectively, denote the closure and interior of H in (X, τ). A subset H of a space (X, τ) is called an α-open [15] (resp.

semi-open [9], preopen [12]) set if H⊆int(cl(int(H))) (resp. H⊆cl(int(H)), H⊆int(cl(H))). The family of all α-open sets in

(X, τ), denoted by τα, is a topology on X finer than τ . The closure of H in (X, τα) is denoted by α-cl(H).

Definition 1.1 ([10]). A subset H of a space (X, τ) is said to be

(1). g-closed if cl(H)⊆U whenever H⊆U and U is open in X.

(2). g-open if its complement is g-closed.

An ideal I on a space (X, τ) is a nonempty collection of subsets of X which satisfies (i) A∈I and B⊆A⇒B∈I and (ii) A∈I

and B∈I⇒A∪B∈I. Given a space (X, τ) with an ideal I on X and if ℘(X) is the set of all subsets of X, a set operator

(.)∗ : ℘(X)→℘(X), called a local function [8] of A with respect to τ and I, is defined as follows: for A⊆X, A∗(I,τ)={x∈X

| U∩A/∈I for every U∈τ(x)} where τ(x)={U∈τ | x∈U}. We will make use of the basic facts about the local functions [[6],

Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator cl∗(.) for a topology τ∗(I,τ), called the

⋆-topology, finer than τ is defined by cl∗(A)=A∪A∗(I,τ) [17]. When there is no chance for confusion, we will simply write

A∗ for A∗(I,τ) and τ∗ for τ∗(I,τ). int∗(A) will denote the interior of A in (X, τ∗).

If I is an ideal on X, then (X, τ , I) is called an ideal topological space or an ideal space. N is the ideal of all nowhere dense

subsets in (X, τ).
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Definition 1.2. A subset H of an ideal space (X, τ , I) is called ⋆-closed [6] (resp. ⋆-dense in itself [4]) if H∗⊆H or H =

cl∗(H) (resp. H⊆H∗). The complement of a ⋆-closed set is called ⋆-open.

Definition 1.3. A subset H of an ideal topological space (X, τ , I) is called

(1). Ig-closed [1] if H∗⊆U whenever H⊆U and U is open in X.

(2). ⋆-g-closed [11] if cl(H) ⊆ U whenever H ⊆ U and U is ⋆-open in X.

Remark 1.4. [11] For a subset of an ideal space (X, τ , I), we have the following implications:

closed −→ ⋆-g-closed −→ g-closed

None of the above implications is reversible.

Lemma 1.5 ([6]). Let (X, τ , I) be an ideal space and A, B subsets of X. Then the following properties hold:

(1). A⊆B⇒A∗⊆B∗,

(2). A∗=cl(A∗)⊆cl(A),

(3). (A∗)∗⊆A∗,

(4). (A∪B)∗=A∗∪B∗,

(5). (A∩B)∗⊆A∗∩B∗.

Definition 1.6. An ideal I is said to be

(1). codense [2] or τ -boundary [14] if τ ∩ I={∅},

(2). completely codense [2] if PO(X) ∩ I={∅}, where PO(X) is the family of all preopen sets in (X, τ).

Lemma 1.7. Every completely codense ideal is codense but not conversely [2].

Lemma 1.8. Let (X, τ , I) be an ideal space and H⊆X. If H⊆H∗, then H∗=cl(H∗)=cl(H) =cl∗(H) [[16], Theorem 5].

Lemma 1.9. Let (X, τ , I) be an ideal space. Then I is codense if and only if G⊆G∗ for every semi-open set G in X [[16],

Theorem 3].

Lemma 1.10. Let (X, τ , I) be an ideal space. If I is completely codense, then τ∗⊆τα [[16], Theorem 6].

Definition 1.11. [1] An ideal space (X, τ, I) is called TI if every Ig-closed subset of X is ⋆-closed in X.

Lemma 1.12. If (X, τ , I) is a TI ideal space and H is an Ig-closed set, then H is a ⋆-closed set [[13], Corollary 2.2].

Lemma 1.13. Every g-closed set is Ig-closed but not conversely [[1], Theorem 2.1].

2. Properties of Ig-⋆-closed Sets

Definition 2.1. A subset A of an ideal space (X, τ , I) is said to be

(1). Ig-⋆-closed if A∗⊆ U whenever A⊆U and U is ⋆-open,

(2). Ig-⋆-open if its complement is Ig-⋆-closed.
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Theorem 2.2. If (X, τ , I) is any ideal space, then every Ig-⋆-closed set is Ig-closed.

Proof. It follows from the fact that every open set is ⋆-open.

The converse of Theorem 2.2 is not true in general as shown in the following Example.

Example 2.3. Let X={a, b, c}, τ={∅, X, {c}} and I={∅, {a}}. Then {b} is Ig-closed but not Ig-⋆-closed. ⋆-closed sets

are ∅, X, {a}, {a, b}; ⋆-g-closed sets = Ig-⋆-closed sets are ∅, X, {a}, {a, b}, {a, c} and g-closed sets = Ig-closed sets are

∅, X, {a}, {b}, {a, b}, {a, c}, {b, c}.

Proposition 2.4. If A is a ⋆-closed set of (X, τ , I) and B is closed in (X, τ), then A ∩B is ⋆-closed in (X, τ , I).

Proof. cl⋆(A ∩B) ⊆ cl⋆(A) ∩ cl⋆(B) ⊆ cl⋆(A) ∩ cl(B) = A ∩B. Hence A ∩B = cl⋆(A ∩B) and A ∩B is ⋆-closed.

The following Theorem gives characterizations of Ig-⋆-closed sets.

Theorem 2.5. If (X, τ , I) is any ideal space and A⊆X, then the following are equivalent.

(1). A is Ig-⋆-closed,

(2). cl∗(A)⊆U whenever A⊆U and U is ⋆-open in X,

(3). cl∗(A)−A contains no nonempty ⋆-closed set,

(4). A∗−A contains no nonempty ⋆-closed set.

Proof.

(1) ⇒ (2) Let A ⊆ U where U is ⋆-open in X. Since A is Ig-⋆-closed, A
∗ ⊆ U and so cl∗(A) = A ∪ A∗ ⊆ U.

(2) ⇒ (3) Let F be a ⋆-closed subset such that F ⊆ cl∗(A)−A. Then F ⊆ cl∗(A). Also F ⊆ cl∗(A)−A ⊆ X − A and hence

A ⊆ X − F where X − F is ⋆-open. By (2) cl∗(A) ⊆ X − F and so F ⊆ X − cl∗(A). Thus F ⊆ cl∗(A) ∩ X − cl∗(A) = ∅.

(3) ⇒ (4) A∗ − A = A ∪ A∗ − A = cl∗(A) − A which has no nonempty ⋆-closed subset by (3).

(4) ⇒ (1) Let A ⊆ U where U is ⋆-open. Then X − U ⊆ X − A and so A∗ ∩ (X − U) ⊆ A∗ ∩ (X − A) = A∗ − A. Since

A∗ is always a closed subset and X − U is ⋆-closed, A∗ ∩ (X − U) is a ⋆-closed set contained in A∗ − A and hence A∗ ∩

(X − U) = ∅ by (4). Thus A∗ ⊆ U and A is Ig-⋆-closed.

Theorem 2.6. Every ⋆-closed set is Ig-⋆-closed.

Proof. Let A be a ⋆-closed set. To prove A is Ig-⋆-closed, let U be any ⋆-open set such that A ⊆ U. Since A is ⋆-closed,

A∗ ⊆ A ⊆ U. Thus A is Ig-⋆-closed.

The converse of Theorem 2.6 is not true in general as shown in the following Example.

Example 2.7. In Example 2.3, {a, c} is Ig-⋆-closed but not ⋆-closed.

Theorem 2.8. Let (X, τ , I) be an ideal space. For every A∈I, A is Ig-⋆-closed.

Proof. Let A ∈ I and let A ⊆ U where U is ⋆-open. Since A ∈ I, A∗ = ∅ ⊆ U. Thus A is Ig-⋆-closed.

Theorem 2.9. If (X, τ , I) is an ideal space, then A∗ is always Ig-⋆-closed for every subset A of X.

Proof. Let A∗⊆U where U is ⋆-open. Since (A∗)∗⊆A∗ [6], we have (A∗)∗ ⊆U. Hence A∗ is Ig-⋆-closed.

Theorem 2.10. Let (X, τ , I) be an ideal space. Then every Ig-⋆-closed, ⋆-open set is ⋆-closed.
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Proof. Let A be Ig-⋆-closed and ⋆-open. We have A ⊆ A where A is ⋆-open. Since A is Ig-⋆-closed, A
∗ ⊆ A. Thus A is

⋆-closed.

Corollary 2.11. If (X, τ , I) is a TI ideal space and A is an Ig-⋆-closed set, then A is a ⋆-closed set.

Proof. By assumption A is Ig-⋆-closed in (X, τ , I) and so by Theorem 2.2, A is Ig-closed. Since (X, τ , I) is a TI-space,

by Definition 1.11, A is ⋆-closed.

Corollary 2.12. Let (X, τ , I) be an ideal space and A be an Ig-⋆-closed set. Then the following are equivalent.

(1). A is a ⋆-closed set,

(2). cl∗(A)−A is a ⋆-closed set,

(3). A∗−A is a ⋆-closed set.

Proof.

(1) ⇒ (2) By (1) A is ⋆-closed. Hence A∗ ⊆ A and cl∗(A) − A = (A ∪ A∗) − A = ∅ which is a ⋆-closed set.

(2) ⇒ (3) A∗ − A = A ∪ A∗ − A = cl∗(A) − A which is a ⋆-closed set by (2).

(3) ⇒ (1) Since A is Ig-⋆-closed, by Theorem 2.5 A∗ − A contains no non-empty ⋆-closed set. By assumption (3) A∗ − A

is ⋆-closed and hence A∗ − A = ∅. Thus A∗ ⊆ A and A is ⋆-closed.

Theorem 2.13. Let (X, τ , I) be an ideal space. Then every ⋆-g-closed set is an Ig-⋆-closed set.

Proof. Let A be a ⋆-g-closed set. Let U be any ⋆-open set such that A ⊆ U. Since A is ⋆-g-closed, cl(A) ⊆ U. So, A∗ ⊆

cl(A) ⊆ U and thus A is Ig-⋆-closed.

The converse of Theorem 2.13 is not true in general as shown in the following Example.

Example 2.14. Let X = {a, b, c, d}, τ = {∅, X, {d}, {a, c}, {a, c, d}} and I = {∅, {a}, {d}, {a, d}}. Then {a} is

Ig-⋆-closed but not ⋆-g-closed. g-closed sets are ∅, X, {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}; Ig-⋆-closed

sets are ∅, X, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d} and ⋆-g-closed sets are ∅, X, {b}, {a, b}, {b, d}, {a,

b, c}, {a, b, d}.

Theorem 2.15. If (X, τ , I) is an ideal space and A is a ⋆-dense in itself, Ig-⋆-closed subset of X, then A is ⋆-g-closed.

Proof. Let A ⊆ U where U is ⋆-open. Since A is Ig-⋆-closed, A
∗ ⊆ U. As A is ⋆-dense in itself, by Lemma 1.8, cl(A) =

A∗. Thus cl(A)⊆U and hence A is ⋆-g-closed.

Corollary 2.16. If (X, τ , I) is any ideal space where I={∅}, then A is Ig-⋆-closed if and only if A is ⋆-g-closed.

Proof. In (X, τ , I), if I = {∅} then A∗ = cl(A) for the subset A. A is Ig-⋆-closed ⇔ A∗ ⊆ U whenever A ⊆ U and U is

⋆-open ⇔ cl(A) ⊆ U whenever A ⊆ U and U is ⋆-open ⇔ A is ⋆-g-closed.

Corollary 2.17. In an ideal space (X, τ , I) where I is codense, if A is a semi-open and Ig-⋆-closed subset of X, then A

is ⋆-g-closed.

Proof. By Lemma 1.9, A is ⋆-dense in itself. By Theorem 2.15, A is ⋆-g-closed.

Example 2.18. In Example 2.3, {b} is g-closed but not Ig-⋆-closed.

Example 2.19. In Example 2.14, {a} is Ig-⋆-closed but not g-closed.
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Remark 2.20. We see that from Examples 2.18 and 2.19, g-closed sets and Ig-⋆-closed sets are independent.

Remark 2.21. We have the following implications for the subsets stated above.

closed ⋆-g-closed g-closed

⋆-closed Ig-⋆-closed Ig-closed

✲ ✲

✲ ✲

❄ ❄ ❄

Theorem 2.22. Let (X, τ , I) be an ideal space and A⊆X. Then A is Ig-⋆-closed if and only if A=F−N where F is ⋆-closed

and N contains no nonempty ⋆-closed set.

Proof. If A is Ig-⋆-closed, then by Theorem 2.5(4), N=A∗−A contains no nonempty ⋆-closed set. If F=cl∗(A),

then F is ⋆-closed such that F−N=(A∪A∗)−(A∗−A)=(A∪ A∗)∩(A∗∩Ac)c=(A∪A∗)∩((A∗)c∪A)=(A∪A∗)∩(A∪(A∗)c)=

A∪(A∗∩(A∗)c)=A.

Conversely, suppose A=F−N where F is ⋆-closed and N contains no nonempty ⋆-closed set. Let U be an ⋆-open

set such that A⊆U. Then F−N⊆U which implies that F∩(X−U)⊆N. Now A⊆F and F∗⊆F then A∗⊆F∗ and so

A∗∩(X−U)⊆F∗∩(X−U)⊆F∩ (X−U)⊆N. Since A∗∩(X−U) is ⋆-closed, by hypothesis A∗∩(X−U)=∅ and so A∗⊆U. Hence A

is Ig-⋆-closed.

Theorem 2.23. Let (X, τ , I) be an ideal space. If A and B are subsets of X such that A⊆B⊆cl∗(A) and A is Ig-⋆-closed,

then B is Ig-⋆-closed.

Proof. Since A is Ig-⋆-closed, then by Theorem 2.5(3), cl∗(A)−A contains no nonempty ⋆-closed set. But

cl∗(B)−B⊆cl∗(A)−A and so cl∗(B)−B contains no nonempty ⋆-closed set. Hence B is Ig-⋆-closed.

Corollary 2.24. Let (X, τ , I) be an ideal space. If A and B are subsets of X such that A⊆B⊆A∗ and A is Ig-⋆-closed,

then A and B are ⋆-g-closed sets.

Proof. Let A and B be subsets of X such that A⊆B⊆A∗. Then A⊆B ⊆A∗⊆cl∗(A). Since A is Ig-⋆-closed, by Theorem

2.23, B is Ig-⋆-closed. Since A⊆B⊆A∗, we have A∗ = B∗. Hence A ⊆ A∗ and B ⊆ B∗. Thus A is ⋆-dense in itself and B is

⋆-dense in itself and by Theorem 2.15, A and B are ⋆-g-closed.

The following Theorem gives a characterization of Ig-⋆-open sets.

Theorem 2.25. Let (X, τ , I) be an ideal space and A⊆X. Then A is Ig-⋆-open if and only if F⊆int∗(A) whenever F is

⋆-closed and F⊆A.

Proof. Suppose A is Ig-⋆-open. If F is ⋆-closed and F⊆A, then X−A⊆X−F and so cl∗(X−A)⊆X−F by Theorem 2.5(2).

Therefore F⊆X−cl∗(X−A)=int∗(A). Hence F⊆int∗(A).

Conversely, suppose the condition holds. Let U be an ⋆-open set such that X−A⊆U. Then X−U⊆A and so X−U⊆int∗(A).

Therefore cl∗(X−A)⊆U. By Theorem 2.5(2), X−A is Ig-⋆-closed. Hence A is Ig-⋆-open.

Corollary 2.26. Let (X, τ , I) be an ideal space and A⊆X. If A is Ig-⋆-open, then F⊆int∗(A) whenever F is closed and

F⊆A.

The following Theorem gives a property of Ig-⋆-closed.
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Theorem 2.27. Let (X, τ , I) be an ideal space and A, B⊆X. If A is Ig-⋆-open and int∗(A)⊆B⊆A, then B is Ig-⋆-open.

Proof. Since int∗(A) ⊆ B ⊆ A, we have X − A ⊆ X − B ⊆ X − int∗(A) = cl∗(X − A). By assumption A is Ig-⋆-open

and so X − A is Ig-⋆-closed. Hence by Theorem 2.23, X − B is Ig-⋆-closed and B is Ig-⋆-open.

The following Theorem gives a characterization of Ig-⋆-closed sets in terms of Ig-⋆-open sets.

Theorem 2.28. Let (X, τ , I) be an ideal space and A⊆X. Then the following are equivalent.

(1). A is Ig-⋆-closed,

(2). A∪(X−A∗) is Ig-⋆-closed,

(3). A∗−A is Ig-⋆-open.

Proof.

(1) ⇒ (2). Suppose A is Ig-⋆-closed. If U is any ⋆-open set such that (A∪(X−A∗))⊆U, then

X−U⊆X−(A∪(X−A∗))=[A∪(A∗)c]c=A∗∩Ac=A∗−A. Since A is Ig-⋆-closed, by Theorem 2.5(4), it follows that X−U=∅

and so X=U. Since X is the only ⋆-open set containing A∪(X−A∗), clearly, A∪(X−A∗) is Ig-⋆-closed.

(2) ⇒ (1). Suppose A∪(X−A∗) is Ig-⋆-closed. If F is any ⋆-closed set such that F⊆A∗−A = X−(A∪(X−A∗)), then

A∪(X−A∗)⊆X−F and X−F is ⋆-open. Therefore, (A∪(X−A∗))∗⊆X−F which implies that A∗∪(X−A∗)∗⊆X−F and so

F⊆X−A∗. Since F⊆A∗, it follows that F=∅. Hence A is Ig-⋆-closed.

The equivalence of (2) and (3) follows from the fact that X−(A∗−A)=A∪(X−A∗).

Theorem 2.29. Let (X, τ , I) be an ideal space. Then every subset of X is Ig-⋆-closed if and only if every ⋆-open set is

⋆-closed.

Proof. Suppose every subset of X is Ig-⋆-closed. Let U be any ⋆-open in X. Then U ⊆ U and U is Ig-⋆-closed by assumption

implies U∗ ⊆ U. Hence U is ⋆-closed.

Conversely, let A ⊆ X and U be any ⋆-open such that A ⊆ U. Since U is ⋆-closed by assumption, we have A∗ ⊆ U∗ ⊆ U.

Thus A is Ig-⋆-closed.

The following Theorem gives a characterization of normal spaces in terms of Ig-⋆-open sets.

Theorem 2.30. Let (X, τ , I) be an ideal space where I is completely codense. Then the following are equivalent.

(1). X is normal,

(2). For any disjoint closed sets A and B, there exist disjoint Ig-⋆-open sets U and V such that A⊆U and B⊆V,

(3). For any closed set A and open set V containing A, there exists an Ig-⋆-open set U such that A⊆U⊆cl∗(U)⊆V.

Proof.

(1)⇒(2) The proof follows from the fact that every open set is Ig-⋆-open.

(2)⇒(3) Suppose A is closed and V is an open set containing A. Since A and X−V are disjoint closed sets, there exist disjoint

Ig-⋆-open sets U and W such that A⊆U and X−V⊆W. Since X−V is ⋆-closed and W is Ig-⋆-open, X−V⊆int∗(W). Then

X−int∗(W)⊆V. Again U∩W=∅ which implies that U∩int∗(W)=∅ and so U⊆X−int∗(W). Then cl∗(U)⊆X−int∗(W)⊆V and

thus U is the required Ig-⋆-open set with A⊆U⊆cl∗(U)⊆V.

(3)⇒(1) Let A and B be two disjoint closed subsets of X. Then A is a closed set and X−B an open set containing A. By

hypothesis, there exists an Ig-⋆-open set U such that A⊆U⊆cl∗(U)⊆X−B. Since U is Ig-⋆-open and A is ⋆-closed we have
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A⊆int∗(U). Since I is completely codense, by Lemma 1.10, τ∗⊆τα and so int∗(U) and X−cl∗(U)∈τα. Hence A⊆int∗(U)⊆

int(cl(int(int∗(U))))=G and B⊆X−cl∗(U)⊆ int(cl(int(X−cl∗(U))))=H. G and H are the required disjoint open sets containing

A and B respectively, which proves (1).

Definition 2.31. A subset H of an ideal space (X, τ , I) is said to be an gα-⋆-closed if α-cl(H)⊆U whenever H⊆U and U

is ⋆-open. The complement of an gα-⋆-closed set is called gα-⋆-open.

If I=N , it is not difficult to see that Ig-⋆-closed sets coincide with gα-⋆-closed sets and so we have the following Corollary.

Corollary 2.32. Let (X, τ , I) be an ideal space where I=N . Then the following are equivalent.

(1). X is normal,

(2). For any disjoint closed sets A and B, there exist disjoint gα-⋆-open sets U and V such that A⊆U and B⊆V,

(3). For any closed set A and open set V containing A, there exists an gα-⋆-open set U such that A⊆U⊆α-cl(U)⊆V.

Definition 2.33. A subset H of an ideal space is said to be I-compact [3] or compact modulo I [14] if for every open cover

{Uα | α∈∆} of H, there exists a finite subset ∆0 of ∆ such that H−∪{Uα | α∈∆0}∈I. The space (X, τ , I) is I-compact if

X is I-compact as a subset.

Theorem 2.34. Let (X, τ , I) be an ideal space. If A is an Ig-closed subset of X, then A is I-compact [[13], Theorem 2.17].

Corollary 2.35. Let (X, τ , I) be an ideal space. If A is an Ig-⋆-closed subset of X, then A is I-compact.

Proof. The proof follows from the fact that every Ig-⋆-closed set is Ig-closed.

3. ⋆-I-locally Closed Sets

Definition 3.1. A subset H of an ideal space (X, τ , I) is called a ⋆-I-locally closed set (briefly, ⋆-I-LC) if H=U∩V where

U is ⋆-open and V is ⋆-closed.

Definition 3.2 ([7]). A subset H of an ideal space (X, τ , I) is called a weakly I-locally closed set (briefly, weakly I-LC) if

H=U∩V where U is open and V is ⋆-closed.

Proposition 3.3. Let (X, τ , I) be an ideal space and H a subset of X. Then the following hold.

(1). If H is ⋆-open, then H is ⋆-I-LC-set.

(2). If H is ⋆-closed, then H is ⋆-I-LC-set.

(3). If H is a weakly I-LC-set, then H is a ⋆-I-LC-set.

The converses of Proposition 3.3 are not true in general as shown in the following Examples.

Example 3.4.

(1). In Example 2.3, {b} is a ⋆-I-LC-set but it is not a ⋆-closed set.

(2). In Example 2.3, {a, b} is a ⋆-I-LC-set but it is not an ⋆-open set.

Example 3.5. In Example 2.3, {b} is a ⋆-I-LC-set but it is not a weakly I-LC-set.
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Ig-⋆-closed Sets

Theorem 3.6. Let (X, τ , I) be an ideal space. If A is a ⋆-I-LC-set and B is a ⋆-closed set, then A∩B is a ⋆-I-LC-set.

Proof. Let B be ⋆-closed, then A∩B=(U∩V)∩B=U∩(V∩B), where V∩B is ⋆-closed. Hence A∩B is a ⋆-I-LC-set.

Theorem 3.7. A subset of an ideal space (X, τ , I) is ⋆-closed if and only if it is (i) weakly I-LC and Ig-closed [5] (ii)

⋆-I-LC and Ig-⋆-closed.

Proof. (ii) Necessity is trivial. We prove only sufficiency. Let A be ⋆-I-LC-set and Ig-⋆-closed. Since A is ⋆-I-LC,

A=U∩V, where U is ⋆-open and V is ⋆-closed. So, we have A=U∩V⊆U. Since A is Ig-⋆-closed, A
∗ ⊆ U. Also since A =

U∩V⊆V and V is ⋆-closed, we have A∗ ⊆ V. Consequently, A∗ ⊆U∩V = A and hence A is ⋆-closed.

Remark 3.8.

(1). The notions of weakly I-LC-set and Ig-closed set are independent [5].

(2). The notions of ⋆-I-LC-set and Ig-⋆-closed set are independent.

Example 3.9. In Example 2.3, {b} is a ⋆-I-LC-set but it is not an Ig-⋆-closed set.

Example 3.10. In Example 2.3, {a, c} is an Ig-⋆-closed set but it is not a ⋆-I-LC-set.

4. Decompositions of ⋆-continuity

Definition 4.1. A function f : (X, τ , I)→(Y, σ) is said to be ⋆-continuous [5] (resp. Ig-continuous [5], ⋆-I-LC-continuous,

Ig-⋆-continuous, weakly I-LC-continuous [7]) if f−1(A) is ⋆-closed (resp. Ig-closed, ⋆-I-LC-set, Ig-⋆-closed, weakly I-LC-

set) in (X, τ , I) for every closed set A of (Y, σ).

Theorem 4.2. A function f : (X, τ , I)→(Y, σ) is ⋆-continuous if and only if it is (i) weakly I-LC-continuous and

Ig-continuous [5]. (ii) ⋆-I-LC-continuous and Ig-⋆-continuous.

Proof. It is an immediate consequence of Theorem 3.7.
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