Volume 3, Issue 1 (2017), 37-45.

ISSN: 2394-5745

Available Online: http://ijcrst.in/

International Journal of Current Research in Science and Technology

\mathcal{I}_q - \star -closed Sets

Research Article

K.Meena¹, O.Nethaji², R.Premkumar² and O.Ravi²*

- 1 Department of Mathematics, Arulmigu Palaniandavar Arts College for Women, Palani, Dindigul District, Tamil Nadu, India.
- 2 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

Abstract: The notion of \mathcal{I}_g - \star -closed sets is introduced in ideal topological spaces. Characterizations and properties of \mathcal{I}_g - \star -closed

sets and \mathcal{I}_g - \star -open sets are given. A characterization of normal spaces is given in terms of \mathcal{I}_g - \star -open sets. Also, it is

established that an \mathcal{I}_g - \star -closed subset of an \mathcal{I} -compact space is \mathcal{I} -compact.

MSC: 54A05, 54A10

Keywords: \star -g-closed set, \mathcal{I}_g - \star -closed set, \mathcal{I} -compact space.

© JS Publication.

1. Introduction and Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $H \subseteq X$, cl(H) and int(H) will, respectively, denote the closure and interior of H in (X, τ) . A subset H of a space (X, τ) is called an α -open [15] (resp. semi-open [9], preopen [12]) set if $H \subseteq int(cl(int(H)))$ (resp. $H \subseteq cl(int(H))$, $H \subseteq int(cl(H))$). The family of all α -open sets in (X, τ) , denoted by τ^{α} , is a topology on X finer than τ . The closure of H in (X, τ^{α}) is denoted by α -cl(H).

Definition 1.1 ([10]). A subset H of a space (X, τ) is said to be

(1). g-closed if $cl(H)\subseteq U$ whenever $H\subseteq U$ and U is open in X.

(2). q-open if its complement is q-closed.

An ideal \mathcal{I} on a space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$. Given a space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [8] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [[6], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I},\tau)$, called the \star -topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I},\tau)$ [17]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I},\tau)$ and τ^* for $\tau^*(\mathcal{I},\tau)$. int $^*(A)$ will denote the interior of A in (X,τ^*) .

If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space or an ideal space. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) .

^{*} E-mail: siingam@yahoo.com

Definition 1.2. A subset H of an ideal space (X, τ, \mathcal{I}) is called \star -closed [6] (resp. \star -dense in itself [4]) if $H^* \subseteq H$ or $H = cl^*(H)$ (resp. $H \subseteq H^*$). The complement of a \star -closed set is called \star -open.

Definition 1.3. A subset H of an ideal topological space (X, τ, \mathcal{I}) is called

- (1). \mathcal{I}_g -closed [1] if $H^* \subseteq U$ whenever $H \subseteq U$ and U is open in X.
- (2). \star -g-closed [11] if $cl(H) \subseteq U$ whenever $H \subseteq U$ and U is \star -open in X.

Remark 1.4. [11] For a subset of an ideal space (X, τ, \mathcal{I}) , we have the following implications:

$$closed \longrightarrow \star \text{-}g\text{-}closed \longrightarrow g\text{-}closed$$

None of the above implications is reversible.

Lemma 1.5 ([6]). Let (X, τ, \mathcal{I}) be an ideal space and A, B subsets of X. Then the following properties hold:

- (1). $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- (2). $A^* = cl(A^*) \subseteq cl(A)$,
- (3). $(A^*)^* \subseteq A^*$,
- $(4). (A \cup B)^* = A^* \cup B^*,$
- (5). $(A \cap B)^* \subseteq A^* \cap B^*$.

Definition 1.6. An ideal \mathcal{I} is said to be

- (1). codense [2] or τ -boundary [14] if $\tau \cap \mathcal{I} = \{\emptyset\}$,
- (2). completely codense [2] if $PO(X) \cap \mathcal{I} = \{\emptyset\}$, where PO(X) is the family of all preopen sets in (X, τ) .

Lemma 1.7. Every completely codense ideal is codense but not conversely [2].

Lemma 1.8. Let (X, τ, \mathcal{I}) be an ideal space and $H \subseteq X$. If $H \subseteq H^*$, then $H^* = cl(H^*) = cl(H) = cl^*(H)$ [[16], Theorem 5].

Lemma 1.9. Let (X, τ, \mathcal{I}) be an ideal space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X [[16], Theorem 3].

Lemma 1.10. Let (X, τ, \mathcal{I}) be an ideal space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$ [[16], Theorem 6].

Definition 1.11. [1] An ideal space (X, τ, \mathcal{I}) is called $T_{\mathcal{I}}$ if every \mathcal{I}_g -closed subset of X is \star -closed in X.

Lemma 1.12. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ ideal space and H is an \mathcal{I}_g -closed set, then H is a \star -closed set [[13], Corollary 2.2].

Lemma 1.13. Every g-closed set is \mathcal{I}_g -closed but not conversely [[1], Theorem 2.1].

2. Properties of \mathcal{I}_q - \star -closed Sets

Definition 2.1. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be

- (1). \mathcal{I}_g - \star -closed if $A^*\subseteq U$ whenever $A\subseteq U$ and U is \star -open,
- (2). \mathcal{I}_g - \star -open if its complement is \mathcal{I}_g - \star -closed.

Theorem 2.2. If (X, τ, \mathcal{I}) is any ideal space, then every \mathcal{I}_q - \star -closed set is \mathcal{I}_q -closed.

Proof. It follows from the fact that every open set is \star -open.

The converse of Theorem 2.2 is not true in general as shown in the following Example.

Example 2.3. Let $X=\{a, b, c\}$, $\tau=\{\emptyset, X, \{c\}\}$ and $\mathcal{I}=\{\emptyset, \{a\}\}$. Then $\{b\}$ is \mathcal{I}_g -closed but not \mathcal{I}_g - \star -closed. \star -closed sets are \emptyset , X, $\{a\}$, $\{a, b\}$, $\{a, c\}$ and g-closed sets = \mathcal{I}_g -closed sets are \emptyset , X, $\{a\}$, $\{a\}$, $\{b\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$.

Proposition 2.4. If A is a \star -closed set of (X, τ, \mathcal{I}) and B is closed in (X, τ) , then $A \cap B$ is \star -closed in (X, τ, \mathcal{I}) .

Proof. $cl^*(A \cap B) \subseteq cl^*(A) \cap cl^*(B) \subseteq cl^*(A) \cap cl(B) = A \cap B$. Hence $A \cap B = cl^*(A \cap B)$ and $A \cap B$ is \star -closed. \square

The following Theorem gives characterizations of \mathcal{I}_q - \star -closed sets.

Theorem 2.5. If (X, τ, \mathcal{I}) is any ideal space and $A \subseteq X$, then the following are equivalent.

- (1). A is \mathcal{I}_q - \star -closed,
- (2). $cl^*(A)\subseteq U$ whenever $A\subseteq U$ and U is \star -open in X,
- (3). $cl^*(A)-A$ contains no nonempty \star -closed set,
- (4). A^*-A contains no nonempty \star -closed set.

Proof.

- (1) \Rightarrow (2) Let $A \subseteq U$ where U is \star -open in X. Since A is \mathcal{I}_g - \star -closed, $A^* \subseteq U$ and so $cl^*(A) = A \cup A^* \subseteq U$.
- (2) \Rightarrow (3) Let F be a \star -closed subset such that $F \subseteq cl^*(A) A$. Then $F \subseteq cl^*(A)$. Also $F \subseteq cl^*(A) A \subseteq X A$ and hence $A \subseteq X F$ where X F is \star -open. By (2) $cl^*(A) \subseteq X F$ and so $F \subseteq X cl^*(A)$. Thus $F \subseteq cl^*(A) \cap X cl^*(A) = \emptyset$.
- (3) \Rightarrow (4) $A^* A = A \cup A^* A = cl^*(A) A$ which has no nonempty \star -closed subset by (3).
- (4) \Rightarrow (1) Let $A \subseteq U$ where U is \star -open. Then $X U \subseteq X A$ and so $A^* \cap (X U) \subseteq A^* \cap (X A) = A^* A$. Since A^* is always a closed subset and X U is \star -closed, $A^* \cap (X U)$ is a \star -closed set contained in $A^* A$ and hence $A^* \cap (X U) = \emptyset$ by (4). Thus $A^* \subseteq U$ and A is \mathcal{I}_q - \star -closed.

Theorem 2.6. Every \star -closed set is \mathcal{I}_g - \star -closed.

Proof. Let A be a \star -closed set. To prove A is \mathcal{I}_g - \star -closed, let U be any \star -open set such that A \subseteq U. Since A is \star -closed, A* \subseteq A \subseteq U. Thus A is \mathcal{I}_g - \star -closed.

The converse of Theorem 2.6 is not true in general as shown in the following Example.

Example 2.7. In Example 2.3, $\{a, c\}$ is \mathcal{I}_g - \star -closed but not \star -closed.

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal space. For every $A \in \mathcal{I}$, A is $\mathcal{I}_g - \star$ -closed.

Proof. Let $A \in \mathcal{I}$ and let $A \subseteq U$ where U is \star -open. Since $A \in \mathcal{I}$, $A^* = \emptyset \subseteq U$. Thus A is \mathcal{I}_g - \star -closed.

Theorem 2.9. If (X, τ, \mathcal{I}) is an ideal space, then A^* is always \mathcal{I}_g - \star -closed for every subset A of X.

Proof. Let $A^*\subseteq U$ where U is \star -open. Since $(A^*)^*\subseteq A^*$ [6], we have $(A^*)^*\subseteq U$. Hence A^* is \mathcal{I}_g - \star -closed.

Theorem 2.10. Let (X, τ, \mathcal{I}) be an ideal space. Then every \mathcal{I}_g - \star -closed, \star -open set is \star -closed.

Proof. Let A be \mathcal{I}_g -*-closed and *-open. We have $A \subseteq A$ where A is *-open. Since A is \mathcal{I}_g -*-closed, $A^* \subseteq A$. Thus A is *-closed.

Corollary 2.11. If (X, τ, \mathcal{I}) is a $\mathcal{I}_{\mathcal{I}}$ ideal space and A is an \mathcal{I}_{q} - \star -closed set, then A is a \star -closed set.

Proof. By assumption A is \mathcal{I}_g - \star -closed in (X, τ, \mathcal{I}) and so by Theorem 2.2, A is \mathcal{I}_g -closed. Since (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space, by Definition 1.11, A is \star -closed.

Corollary 2.12. Let (X, τ, \mathcal{I}) be an ideal space and A be an \mathcal{I}_g -*-closed set. Then the following are equivalent.

- (1). A is a \star -closed set,
- (2). $cl^*(A) A$ is a \star -closed set,
- (3). A^*-A is a \star -closed set.

Proof.

- $(1) \Rightarrow (2)$ By (1) A is \star -closed. Hence $A^* \subseteq A$ and $cl^*(A) A = (A \cup A^*) A = \emptyset$ which is a \star -closed set.
- $(2) \Rightarrow (3) A^* A = A \cup A^* A = cl^*(A) A$ which is a \star -closed set by (2).
- (3) \Rightarrow (1) Since A is \mathcal{I}_g - \star -closed, by Theorem 2.5 A* A contains no non-empty \star -closed set. By assumption (3) A* A is \star -closed and hence A* A = \emptyset . Thus A* \subseteq A and A is \star -closed.

Theorem 2.13. Let (X, τ, \mathcal{I}) be an ideal space. Then every \star -g-closed set is an \mathcal{I}_q - \star -closed set.

Proof. Let A be a \star -g-closed set. Let U be any \star -open set such that $A \subseteq U$. Since A is \star -g-closed, $cl(A) \subseteq U$. So, $A^* \subseteq cl(A) \subseteq U$ and thus A is \mathcal{I}_{g} - \star -closed.

The converse of Theorem 2.13 is not true in general as shown in the following Example.

Example 2.14. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}\}$. Then $\{a\}$ is \mathcal{I}_g - \star -closed but not \star -g-closed. g-closed sets are \emptyset , X, $\{b\}$, $\{a, b\}$, $\{b, c\}$, $\{b, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c, d\}$; \mathcal{I}_g - \star -closed sets are \emptyset , X, $\{a\}$, $\{b\}$, $\{d\}$, $\{a, b\}$, $\{a, d\}$, $\{a, b\}$, $\{a, b, c\}$, $\{a, b, d\}$ and \star -g-closed sets are \emptyset , X, $\{b\}$, $\{a, b\}$, $\{b, d\}$, $\{a, b\}$, $\{a$

Theorem 2.15. If (X, τ, \mathcal{I}) is an ideal space and A is a \star -dense in itself, \mathcal{I}_g - \star -closed subset of X, then A is \star -g-closed.

Proof. Let $A \subseteq U$ where U is \star -open. Since A is \mathcal{I}_g - \star -closed, $A^* \subseteq U$. As A is \star -dense in itself, by Lemma 1.8, $cl(A) = A^*$. Thus $cl(A) \subseteq U$ and hence A is \star -g-closed.

Corollary 2.16. If (X, τ, \mathcal{I}) is any ideal space where $\mathcal{I} = \{\emptyset\}$, then A is \mathcal{I}_g - \star -closed if and only if A is \star -g-closed.

Proof. In (X, τ, \mathcal{I}) , if $\mathcal{I} = \{\emptyset\}$ then $A^* = cl(A)$ for the subset A. A is \mathcal{I}_g - \star -closed $\Leftrightarrow A^* \subseteq U$ whenever $A \subseteq U$ and U is \star -open $\Leftrightarrow cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \star -open $\Leftrightarrow A$ is \star -g-closed.

Corollary 2.17. In an ideal space (X, τ, \mathcal{I}) where \mathcal{I} is codense, if A is a semi-open and \mathcal{I}_g - \star -closed subset of X, then A is \star -g-closed.

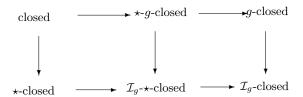
Proof. By Lemma 1.9, A is \star -dense in itself. By Theorem 2.15, A is \star -g-closed.

Example 2.18. In Example 2.3, $\{b\}$ is g-closed but not \mathcal{I}_g - \star -closed.

Example 2.19. In Example 2.14, $\{a\}$ is \mathcal{I}_g -*-closed but not g-closed.

Remark 2.20. We see that from Examples 2.18 and 2.19, g-closed sets and \mathcal{I}_q - \star -closed sets are independent.

Remark 2.21. We have the following implications for the subsets stated above.



Theorem 2.22. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Then A is \mathcal{I}_g - \star -closed if and only if A = F - N where F is \star -closed and N contains no nonempty \star -closed set.

Proof. If A is \mathcal{I}_g -*-closed, then by Theorem 2.5(4), N=A*-A contains no nonempty *-closed set. If F=cl*(A), then F is *-closed such that F-N=(A \cup A*)-(A*-A)=(A \cup A*)\(\text{(A*}\cap A^c)^c=(A \cup A*)\(\text{(A*}\cap A^c)^c=(A \cup A*)\(\text{(A*}\cap A^c)^c=(A \cup A*)\(\text{(A*}\cap A^c)^c=(A \cup A*)\(\text{(A*}\cap A^c)^c=A.

Conversely, suppose A=F-N where F is \star -closed and N contains no nonempty \star -closed set. Let U be an \star -open set such that $A\subseteq U$. Then $F-N\subseteq U$ which implies that $F\cap (X-U)\subseteq N$. Now $A\subseteq F$ and $F^*\subseteq F$ then $A^*\subseteq F^*$ and so $A^*\cap (X-U)\subseteq F^*\cap (X-U)\subseteq F\cap (X-U)\subseteq N$. Since $A^*\cap (X-U)$ is \star -closed, by hypothesis $A^*\cap (X-U)=\emptyset$ and so $A^*\subseteq U$. Hence A is \mathcal{I}_q - \star -closed.

Theorem 2.23. Let (X, τ, \mathcal{I}) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq cl^*(A)$ and A is \mathcal{I}_g - \star -closed, then B is \mathcal{I}_g - \star -closed.

Proof. Since A is \mathcal{I}_g -*-closed, then by Theorem 2.5(3), $\operatorname{cl}^*(A)$ -A contains no nonempty *-closed set. But $\operatorname{cl}^*(B)$ -B \subseteq cl*(A)-A and so $\operatorname{cl}^*(B)$ -B contains no nonempty *-closed set. Hence B is \mathcal{I}_g -*-closed.

Corollary 2.24. Let (X, τ, \mathcal{I}) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is \mathcal{I}_g - \star -closed, then A and B are \star -g-closed sets.

Proof. Let A and B be subsets of X such that $A \subseteq B \subseteq A^*$. Then $A \subseteq B \subseteq A^* \subseteq cl^*(A)$. Since A is $\mathcal{I}_{g^{-\star}}$ -closed, by Theorem 2.23, B is $\mathcal{I}_{g^{-\star}}$ -closed. Since $A \subseteq B \subseteq A^*$, we have $A^* = B^*$. Hence $A \subseteq A^*$ and $B \subseteq B^*$. Thus A is \star -dense in itself and B is \star -dense in itself and by Theorem 2.15, A and B are \star -g-closed.

The following Theorem gives a characterization of \mathcal{I}_g -*-open sets.

Theorem 2.25. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Then A is \mathcal{I}_g - \star -open if and only if $F \subseteq int^*(A)$ whenever F is \star -closed and $F \subseteq A$.

Proof. Suppose A is \mathcal{I}_g - \star -open. If F is \star -closed and F \subseteq A, then X-A \subseteq X-F and so $cl^*(X-A)\subseteq$ X-F by Theorem 2.5(2). Therefore F \subseteq X- $cl^*(X-A)=int^*(A)$. Hence F \subseteq int $^*(A)$.

Conversely, suppose the condition holds. Let U be an \star -open set such that $X-A\subseteq U$. Then $X-U\subseteq A$ and so $X-U\subseteq int^*(A)$. Therefore $cl^*(X-A)\subseteq U$. By Theorem 2.5(2), X-A is \mathcal{I}_g - \star -closed. Hence A is \mathcal{I}_g - \star -open.

Corollary 2.26. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. If A is \mathcal{I}_g -*-open, then $F \subseteq int^*(A)$ whenever F is closed and $F \subseteq A$.

The following Theorem gives a property of \mathcal{I}_q - \star -closed.

Theorem 2.27. Let (X, τ, \mathcal{I}) be an ideal space and $A, B \subseteq X$. If A is \mathcal{I}_g - \star -open and $int^*(A) \subseteq B \subseteq A$, then B is \mathcal{I}_g - \star -open.

Proof. Since $\operatorname{int}^*(A) \subseteq B \subseteq A$, we have $X - A \subseteq X - B \subseteq X - \operatorname{int}^*(A) = \operatorname{cl}^*(X - A)$. By assumption A is \mathcal{I}_g -*-open and so X - A is \mathcal{I}_g -*-closed. Hence by Theorem 2.23, X - B is \mathcal{I}_g -*-closed and B is \mathcal{I}_g -*-open.

The following Theorem gives a characterization of \mathcal{I}_g - \star -closed sets in terms of \mathcal{I}_g - \star -open sets.

Theorem 2.28. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Then the following are equivalent.

- (1). A is \mathcal{I}_g - \star -closed,
- (2). $A \cup (X A^*)$ is $\mathcal{I}_g \star closed$,
- (3). A^*-A is \mathcal{I}_g - \star -open.

Proof.

- (1) \Rightarrow (2). Suppose A is \mathcal{I}_g - \star -closed. If U is any \star -open set such that $(A \cup (X A^*)) \subseteq U$, then $X U \subseteq X (A \cup (X A^*)) = [A \cup (A^*)^c]^c = A^* \cap A^c = A^* A$. Since A is \mathcal{I}_g - \star -closed, by Theorem 2.5(4), it follows that $X U = \emptyset$ and so X = U. Since X is the only \star -open set containing $A \cup (X A^*)$, clearly, $A \cup (X A^*)$ is \mathcal{I}_g - \star -closed.
- (2) \Rightarrow (1). Suppose $A \cup (X A^*)$ is \mathcal{I}_g -*-closed. If F is any *-closed set such that $F \subseteq A^* A = X (A \cup (X A^*))$, then $A \cup (X A^*) \subseteq X F$ and X F is *-open. Therefore, $(A \cup (X A^*))^* \subseteq X F$ which implies that $A^* \cup (X A^*)^* \subseteq X F$ and so $F \subseteq X A^*$. Since $F \subseteq A^*$, it follows that $F = \emptyset$. Hence A is \mathcal{I}_g -*-closed.

The equivalence of (2) and (3) follows from the fact that $X-(A^*-A)=A\cup (X-A^*)$.

Theorem 2.29. Let (X, τ, \mathcal{I}) be an ideal space. Then every subset of X is \mathcal{I}_g - \star -closed if and only if every \star -open set is \star -closed.

Proof. Suppose every subset of X is \mathcal{I}_g - \star -closed. Let U be any \star -open in X. Then U \subseteq U and U is \mathcal{I}_g - \star -closed by assumption implies U* \subseteq U. Hence U is \star -closed.

Conversely, let $A \subseteq X$ and U be any \star -open such that $A \subseteq U$. Since U is \star -closed by assumption, we have $A^* \subseteq U^* \subseteq U$. Thus A is \mathcal{I}_g - \star -closed.

The following Theorem gives a characterization of normal spaces in terms of \mathcal{I}_g - \star -open sets.

Theorem 2.30. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} is completely codense. Then the following are equivalent.

- (1). X is normal,
- (2). For any disjoint closed sets A and B, there exist disjoint \mathcal{I}_g - \star -open sets U and V such that $A \subseteq U$ and $B \subseteq V$,
- (3). For any closed set A and open set V containing A, there exists an \mathcal{I}_g - \star -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.

Proof.

- (1) \Rightarrow (2) The proof follows from the fact that every open set is \mathcal{I}_g -*-open.
- $(2)\Rightarrow(3)$ Suppose A is closed and V is an open set containing A. Since A and X-V are disjoint closed sets, there exist disjoint \mathcal{I}_g - \star -open sets U and W such that $A\subseteq U$ and $X-V\subseteq W$. Since X-V is \star -closed and W is \mathcal{I}_g - \star -open, X-V \subseteq int*(W). Then $X-int^*(W)\subseteq V$. Again $U\cap W=\emptyset$ which implies that $U\cap int^*(W)=\emptyset$ and so $U\subseteq X-int^*(W)$. Then $cl^*(U)\subseteq X-int^*(W)\subseteq V$ and thus U is the required \mathcal{I}_g - \star -open set with $A\subseteq U\subseteq cl^*(U)\subseteq V$.
- (3)⇒(1) Let A and B be two disjoint closed subsets of X. Then A is a closed set and X−B an open set containing A. By hypothesis, there exists an \mathcal{I}_g -*-open set U such that $A\subseteq U\subseteq cl^*(U)\subseteq X-B$. Since U is \mathcal{I}_g -*-open and A is *-closed we have

A \subseteq int*(U). Since \mathcal{I} is completely codense, by Lemma 1.10, $\tau^*\subseteq\tau^\alpha$ and so int*(U) and X-cl*(U) \in τ^α . Hence A \subseteq int*(U) \subseteq int(cl(int(int*(U))))=G and B \subseteq X-cl*(U) \subseteq int(cl(int(X-cl*(U))))=H. G and H are the required disjoint open sets containing A and B respectively, which proves (1).

Definition 2.31. A subset H of an ideal space (X, τ, \mathcal{I}) is said to be an $g\alpha$ - \star -closed if α -cl $(H)\subseteq U$ whenever $H\subseteq U$ and U is \star -open. The complement of an $g\alpha$ - \star -closed set is called $g\alpha$ - \star -open.

If $\mathcal{I}=\mathcal{N}$, it is not difficult to see that \mathcal{I}_q -*-closed sets coincide with $g\alpha$ -*-closed sets and so we have the following Corollary.

Corollary 2.32. Let (X, τ, \mathcal{I}) be an ideal space where $\mathcal{I}=\mathcal{N}$. Then the following are equivalent.

- (1). X is normal,
- (2). For any disjoint closed sets A and B, there exist disjoint $g\alpha$ -+-open sets U and V such that $A\subseteq U$ and $B\subseteq V$,
- (3). For any closed set A and open set V containing A, there exists an $g\alpha$ -*-open set U such that $A\subseteq U\subseteq \alpha$ -cl(U) $\subseteq V$.

Definition 2.33. A subset H of an ideal space is said to be \mathcal{I} -compact [3] or compact modulo \mathcal{I} [14] if for every open cover $\{U_{\alpha} \mid \alpha \in \Delta\}$ of H, there exists a finite subset Δ_0 of Δ such that $H - \cup \{U_{\alpha} \mid \alpha \in \Delta_0\} \in \mathcal{I}$. The space (X, τ, \mathcal{I}) is \mathcal{I} -compact if X is \mathcal{I} -compact as a subset.

Theorem 2.34. Let (X, τ, \mathcal{I}) be an ideal space. If A is an \mathcal{I}_g -closed subset of X, then A is \mathcal{I} -compact [[13], Theorem 2.17].

Corollary 2.35. Let (X, τ, \mathcal{I}) be an ideal space. If A is an \mathcal{I}_g - \star -closed subset of X, then A is \mathcal{I} -compact.

Proof. The proof follows from the fact that every \mathcal{I}_g - \star -closed set is \mathcal{I}_g -closed.

3. \star - \mathcal{I} -locally Closed Sets

Definition 3.1. A subset H of an ideal space (X, τ, \mathcal{I}) is called a \star - \mathcal{I} -locally closed set (briefly, \star - \mathcal{I} -LC) if $H=U\cap V$ where U is \star -open and V is \star -closed.

Definition 3.2 ([7]). A subset H of an ideal space (X, τ, \mathcal{I}) is called a weakly \mathcal{I} -locally closed set (briefly, weakly \mathcal{I} -LC) if $H=U\cap V$ where U is open and V is \star -closed.

Proposition 3.3. Let (X, τ, \mathcal{I}) be an ideal space and H a subset of X. Then the following hold.

- (1). If H is \star -open, then H is \star - \mathcal{I} - \mathcal{L} C-set.
- (2). If H is \star -closed, then H is \star - \mathcal{I} -LC-set.
- (3). If H is a weakly \mathcal{I} -LC-set, then H is a \star - \mathcal{I} -LC-set.

The converses of Proposition 3.3 are not true in general as shown in the following Examples.

Example 3.4.

- (1). In Example 2.3, $\{b\}$ is a \star - \mathcal{I} -LC-set but it is not a \star -closed set.
- (2). In Example 2.3, $\{a, b\}$ is $a \star \mathcal{I}$ -LC-set but it is not an \star -open set.

Example 3.5. In Example 2.3, $\{b\}$ is a \star - \mathcal{I} -LC-set but it is not a weakly \mathcal{I} -LC-set.

Theorem 3.6. Let (X, τ, \mathcal{I}) be an ideal space. If A is a \star - \mathcal{I} -LC-set and B is a \star -closed set, then $A \cap B$ is a \star - \mathcal{I} -LC-set.

Proof. Let B be \star -closed, then A∩B=(U∩V)∩B=U∩(V∩B), where V∩B is \star -closed. Hence A∩B is a \star - \mathcal{I} -LC-set. \Box

Theorem 3.7. A subset of an ideal space (X, τ, \mathcal{I}) is \star -closed if and only if it is (i) weakly \mathcal{I} -LC and \mathcal{I}_g -closed [5] (ii) \star - \mathcal{I} -LC and \mathcal{I}_g - \star -closed.

Proof. (ii) Necessity is trivial. We prove only sufficiency. Let A be \star - \mathcal{I} -LC-set and \mathcal{I}_g - \star -closed. Since A is \star - \mathcal{I} -LC, A=U∩V, where U is \star -open and V is \star -closed. So, we have A=U∩V⊆U. Since A is \mathcal{I}_g - \star -closed, A* ⊆ U. Also since A = U∩V⊆V and V is \star -closed, we have A* ⊆ V. Consequently, A* ⊆U∩V = A and hence A is \star -closed.

Remark 3.8.

- (1). The notions of weakly \mathcal{I} -LC-set and \mathcal{I}_g -closed set are independent [5].
- (2). The notions of \star -I-LC-set and I_q - \star -closed set are independent.

Example 3.9. In Example 2.3, $\{b\}$ is a \star - \mathcal{I} -LC-set but it is not an \mathcal{I}_g - \star -closed set.

Example 3.10. In Example 2.3, $\{a, c\}$ is an \mathcal{I}_g - \star -closed set but it is not $a \star$ - \mathcal{I} -LC-set.

4. Decompositions of \star -continuity

Definition 4.1. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be \star -continuous [5] (resp. \mathcal{I}_g -continuous [5], \star - \mathcal{I} -LC-continuous, \mathcal{I}_g - \star -continuous, weakly \mathcal{I} -LC-continuous [7]) if $f^{-1}(A)$ is \star -closed (resp. \mathcal{I}_g -closed, \star - \mathcal{I} -LC-set, \mathcal{I}_g - \star -closed, weakly \mathcal{I} -LC-set) in (X, τ, \mathcal{I}) for every closed set A of (Y, σ) .

Theorem 4.2. A function $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is \star -continuous if and only if it is (i) weakly \mathcal{I} -LC-continuous and \mathcal{I}_g -continuous [5]. (ii) \star - \mathcal{I} -LC-continuous and \mathcal{I}_g - \star -continuous.

Proof. It is an immediate consequence of Theorem 3.7.

References

- [1] J.Dontchev, M.Ganster and T.Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [2] J.Dontchev, M.Ganster and D.Rose, *Ideal resolvability*, Topology and its Applications, 93(1999), 1-16.
- [3] T.R.Hamlett and D.Jankovic, Compactness with respect to an ideal, Boll. U. M. I., 7(4-B)(1990), 849-861.
- [4] E.Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [5] V.Inthumathi, S.Krishnaprakash and M.Rajamani, Strongly-I-Locally closed sets and decompositions of ★-continuity,
 Acta Math. Hungar., 130(4)(2011), 358-362.
- [6] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [7] A.Keskin, S.Yuksel and T.Noiri, Decompositions of I-continuity and continuity, Commun. Fac. Sci. Univ. Ank. Series A, 53(2004), 67-75.
- [8] K.Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- [9] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [10] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.

- [11] D.Mandal and M.N.Mukherjee, Certain new classes of generalized closed sets and their applications in ideal topological spaces, Filomat., 29(5)(2015), 1113-1120.
- [12] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [13] M.Navaneethakrishnan and J.Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
- [14] R.L.Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
- [15] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [16] V.Renuka Devi, D.Sivaraj and T.Tamizh Chelvam, Codense and Completely codense ideals, Acta Math. Hungar., 108(2005), 197-205.
- [17] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).