

International Journal of Current Research in Science and Technology

Corrections on Decompositions of ω -continuity^{*}

Research Article

O.Ravi^{1†}, I.Rajasekaran¹, M.Paranjothi² and S.Satheesh Kanna³

- 1 Department of Mathematics, P.M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, Sree Sowdambiga College of Engineering, Aruppukottai, Tamil Nadu, India.
- 3 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamil Nadu, India.
- **Abstract:** In 2009, Noiri et al [3] introduced some weaker forms of ω -open sets in topological spaces. In this paper, we introduce some new subsets of τ_{ω} in topological spaces. Using the weaker forms of ω -open sets and the new subsets of τ_{ω} , we obtain some new decompositions of ω -continuity.

MSC: 54C05, 54C08, 54C10.

Keywords: ω - \mathcal{R} -closed set, $\mathcal{H}^{\star}_{\omega}$ -set, ω - $\mathcal{AB}^{\#}$ -set, locally ω -closed set, strong β - ω -open set, ω -extremally disconnected space. (c) JS Publication.

1. Introduction

Hdeib [2] introduced the concepts of ω -closed and ω -open sets in topological spaces. Noiri et al [3] introduced the concepts of α - ω -open, pre- ω -open, β - ω -open and b- ω -open sets in topological spaces and investigated their properties. Moreover, they used them to obtain decompositions of continuity. Quite Recently, Ravi et al [5] introduced another weaker form of ω -open sets called semi- ω -open sets and proved that the class of semi- ω -open sets is stronger form of the class of b- ω -open sets. Also, they studied their topological properties. Ravi et al [4] introduced some subsets of τ_{ω} and studied their properties. Further more they used them to obtain some decompositions of continuity. In this paper, we introduce some new subsets of τ_{ω} in topological spaces. Using the weaker forms of ω -open sets and the new subsets of τ_{ω} , we obtain some new decompositions of ω -continuity.

2. Preliminaries

Throughout this paper, \mathbb{R} (resp. \mathbb{N} , \mathbb{Q} , \mathbb{Q}^* , \mathbb{Q}^*_+) denotes the set of all real numbers (resp. the set of all natural numbers, the set of all rational numbers, the set of all positive irrational numbers). By a space (X, τ) , we always mean a topological space (X, τ) with no separation properties assumed. If $H \subset X$, cl(H) and int(H) will, respectively, denote the closure and interior of H in (X, τ) . τ_u denotes the usual topology on \mathbb{R} .

^{*} This paper is published in the South Asian Journal of Mathematics, volume 6, issue 5, year 2016, pages 215-228. Examples 4.32(2) and 5.10 of this paper were found to be incorrect in the published paper. So the incorrections are rightly corrected out in this paper for readers.

[†] E-mail: siingam@yahoo.com

Definition 2.1 ([6]). Let H be a subset of a space (X, τ) , a point p in X is called a condensation point of H if for each open set U containing p, $U \cap H$ is uncountable.

Definition 2.2 ([2]). A subset H of a space (X, τ) is called ω -closed if it contains all its condensation points. The complement of an ω -closed set is called ω -open.

It is well known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open sets, denoted by τ_{ω} , is a topology on X, which is finer than τ . The interior and closure operator in (X, τ_{ω}) are denoted by int_{ω} and cl_{ω} respectively.

Definition 2.3 ([3]). A subset H of a space (X, τ) is called

- (1). α - ω -open if $H \subset int_{\omega}(cl(int_{\omega}(H)));$
- (2). pre- ω -open if $H \subset int_{\omega}(cl(H));$
- (3). β - ω -open if $H \subset cl(int_{\omega}(cl(H)));$
- (4). b- ω -open if $H \subset int_{\omega}(cl(H)) \cup cl(int_{\omega}(H))$.

Definition 2.4 ([5]). A subset H of a space (X, τ) is called semi- ω -open if $H \subset cl(int_{\omega}(H))$.

Definition 2.5 ([4]). A subset H of a space (X, τ) is called

(1). an $\omega^{\#}$ -t-set if $int(H) = cl(int_{\omega}(H));$

(2). an $\omega^{\#}$ - \mathcal{B} -set if $H = U \cap V$, where $U \in \tau$ and V is an $\omega^{\#}$ -t-set.

Definition 2.6 ([1]). A subset H of a space (X, τ) is called locally closed if $H = U \cap V$, where U is open and V is closed.

Definition 2.7 ([5]). A subset H of a space (X, τ) is called an ω^* -t-set if $int_{\omega}(cl(H)) = int_{\omega}(H)$.

Definition 2.8 ([3]). A subset H of a space (X, τ) is called an ω -t-set if $int(H) = int_{\omega}(cl(H))$.

Definition 2.9 ([5]). A subset H of a space (X, τ) is called semi- ω -regular if H is semi- ω -open and an ω^* -t-set.

Remark 2.10 ([3, 5]). The diagram holds for subsets of a space (X, τ) :

In this diagram, none of the implications is reversible.

Theorem 2.11 ([5]). Let H be a subset of a space (X, τ) . Then H is α - ω -open if and only if it is semi- ω -open and pre- ω -open.

Remark 2.12 ([4]). (1). In \mathbb{R} with usual topology τ_u , a subset H with $int(H) = \phi$ is an $\omega^{\#}$ -t-set if and only if $int(H) = \phi = int_{\omega}(H)$.

(2). In \mathbb{R} with usual topology τ_u , there is no proper subset H, with $int(H) \neq \phi$ which is an $\omega^{\#}$ -t-set. (or) The only subset in \mathbb{R} , with nonempty interior, which is an $\omega^{\#}$ -t-set is \mathbb{R} itself.

Example 2.13 ([4]). In \mathbb{R} with usual topology τ_u , $H = \mathbb{Q}^*$ is not an $\omega^{\#}$ -t-set by (1) of Remark 2.12 since $int(H) = \phi \neq int_{\omega}(H)$.

3. Generalizations of ω -open Sets

Definition 3.1. A subset H of a space (X, τ) is called an ω - $\mathcal{B}^{\star\star}$ -set if $H = U \cap V$, where $U \in \tau_{\omega}$ and V is an $\omega^{\#}$ -t-set.

Remark 3.2. In a space (X, τ) ,

- (1). Every ω -open set is an ω - $\mathcal{B}^{\star\star}$ -set.
- (2). Every $\omega^{\#}$ -t-set is an ω - $\mathcal{B}^{\star\star}$ -set.

Example 3.3. In \mathbb{R} with usual topology τ_u ,

- (1). $H = [0,1] \cap \mathbb{Q}$ is $\omega^{\#}$ -t-set by (1) of Remark 2.12 and hence an ω - $\mathcal{B}^{\star\star}$ -set by (2) of Remark 3.2.
- (2). H = [0,1] is not an ω - $\mathcal{B}^{\star\star}$ -set. If $H = U \cap V$ where $U \in \tau_{\omega}$ and V is an $\omega^{\#}$ -t-set, then $H \subset V$. Since $int(H) \neq \phi$, $int(V) \neq \phi$. Hence $V = \mathbb{R}$ by (2) of Remark 2.12. Thus $H = U \cap \mathbb{R} = U$ where $U \in \tau_{\omega}$. Hence $H \in \tau_{\omega}$ which is a contradiction. So H = [0,1] is not an ω - $\mathcal{B}^{\star\star}$ -set.

Remark 3.4. The converses of (1) and (2) in Remark 3.2 are not true as seen from the following Example.

Example 3.5. In \mathbb{R} with usual topology τ_u ,

- (1). $H = [0,1] \cap \mathbb{Q}$ is an $\omega \mathcal{B}^{\star\star}$ -set by (1) of Example 3.3. But H is not ω -open since $H \neq int_{\omega}(H)$.
- (2). H = (0,1) is ω -open and hence an ω - $\mathcal{B}^{\star\star}$ -set by (1) of Remark 3.2. But H is not an $\omega^{\#}$ -t-set.

Proposition 3.6. For a subset H of a space (X, τ) , the following are equivalent:

- (1). H is ω -open;
- (2). *H* is semi- ω -open and an ω - $\mathcal{B}^{\star\star}$ -set.

Proof.

 $(1) \Rightarrow (2)$: (2) follows by Remark 2.10 and (1) of Remark 3.2.

 $(2) \Rightarrow (1): \text{ Given H is an } \omega \text{-}\mathcal{B}^{**}\text{-set. So } H = U \cap V \text{ where } U \in \tau_{\omega} \text{ and V is an } \omega^{\#}\text{-t-set. Then } H \subset U = int_{\omega}(U).$ Also H is semi- ω -open implies $H \subset cl(int_{\omega}(H)) \subset cl(int_{\omega}(V)) = int(V)$ by assumption. Thus $H \subset int_{\omega}(U) \cap int(V) \subset int_{\omega}(U) \cap int_{\omega}(V) = int_{\omega}(U \cap V) = int_{\omega}(H)$ and hence H is ω -open. \Box

Remark 3.7. The following Example shows that the concepts of semi- ω -openness and being an ω - $\mathcal{B}^{\star\star}$ -set are independent.

Example 3.8. In \mathbb{R} with usual topology τ_u ,

- (1). $H = [0,1] \cap \mathbb{Q}$ is an ω - $\mathcal{B}^{\star\star}$ -set by (1) of Remark 3.5. But H is not semi- ω -open since $H \nsubseteq cl(int_{\omega}(H)) = cl(\phi) = \phi$.
- (2). For H = [0,1], $cl(int_{\omega}(H)) = cl((0,1)) = [0,1]$. Thus $H \subset cl(int_{\omega}(H))$ and H is semi- ω -open. But H is not an ω - $\mathcal{B}^{\star\star}$ -set by (2) of Example 3.3.

Definition 3.9. A subset H of a space (X, τ) is called

- (1). an $\omega^{\star\star}$ -t-set if $int_{\omega}(H) = cl(int_{\omega}(H))$.
- (2). an $\omega^{\star\star}$ - \mathcal{B} -set if $H = U \cap V$, where $U \in \tau_{\omega}$ and V is an $\omega^{\star\star}$ -t-set.

Example 3.10. In \mathbb{R} with usual topology τ_u ,

- (1). $H = [0,1] \cap \mathbb{Q}$ is an $\omega^{\star\star}$ -t-set since $int_{\omega}(H) = cl(int_{\omega}(H)) = \phi$.
- (2). H = [0, 1] is not an $\omega^{\star\star}$ -t-set since $int_{\omega}(H) = (0, 1)$ and $cl(int_{\omega}(H)) = [0, 1]$.

Remark 3.11. In a space (X, τ) ,

- (1). Every ω -open set is an $\omega^{\star\star}$ - \mathcal{B} -set.
- (2). Every $\omega^{\star\star}$ -t-set is an $\omega^{\star\star}$ - \mathcal{B} -set.
- **Example 3.12.** (1). In \mathbb{R} with usual topology τ_u , $H = [0,1] \cap \mathbb{Q}$ is an $\omega^{\star\star}$ -t-set by (1) of Example 3.10 and hence an $\omega^{\star\star}$ -B-set by (2) of Remark 3.11.

(2). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}, H = \mathbb{Q} \cup \{\sqrt{2}\}$ is not an $\omega^{\star\star}$ - \mathcal{B} -set.

If $H = U \cap V$ where $U \in \tau_{\omega}$ and V is an ω^{**} -t-set then $H \subset V$ and $cl(int_{\omega}(H)) \subset cl(int_{\omega}(V)) = int_{\omega}(V)$. Hence $cl(\mathbb{Q}) \subset int_{\omega}(V)$ and we have $\mathbb{R} \subset int_{\omega}(V)$. Thus $\mathbb{R} = V$ and $H = U \cap \mathbb{R} = U \in \tau_{\omega}$ which is a contradiction since H is not ω -open. This proves that H is not an ω^{**} - \mathcal{B} -set.

Remark 3.13. The converses of (1) and (2) in Remark 3.11 are not true as seen from the following Example.

Example 3.14. In \mathbb{R} with usual topology τ_u ,

- (1). $H = [0,1] \cap \mathbb{Q}$ is an $\omega^{\star\star}$ - \mathcal{B} -set by Example 3.12(1). But H is not ω -open since $H \neq int_{\omega}(H)$.
- (2). H = (0,1) is ω -open and hence an ω^{**} -B-set by (1) of Remark 3.11. But H is not an ω^{**} -t-set.

Proposition 3.15. For a subset H of a space (X, τ) , the following are equivalent:

- (1). H is ω -open;
- (2). *H* is semi- ω -open and an $\omega^{\star\star}$ - \mathcal{B} -set.

Proof.

 $(1) \Rightarrow (2)$: (2) follows by Remark 2.10 and (1) of Remark 3.11.

(2) \Rightarrow (1): Given H is an $\omega^{\star\star}$ - \mathcal{B} -set. So $H = U \cap V$ where $U \in \tau_{\omega}$ and $int_{\omega}(V) = cl(int_{\omega}(V))$. Then $H \subset U = int_{\omega}(U)$. Also H is semi- ω -open implies $H \subset cl(int_{\omega}(H)) \subset cl(int_{\omega}(V)) = int_{\omega}(V)$ by assumption. Thus $H \subset int_{\omega}(U) \cap int_{\omega}(V) = int_{\omega}(U \cap V) = int_{\omega}(H)$ and hence H is ω -open.

Remark 3.16. The following Example shows that the concepts of semi- ω -openness and being an $\omega^{\star\star}$ - \mathcal{B} -set are independent.

Example 3.17.

- (1). In \mathbb{R} with usual topology τ_u , $H = [0,1] \cap \mathbb{Q}$ is $\omega^{\star\star}$ - \mathcal{B} -set by (1) of Example 3.14. But H is not semi- ω -open since $H \not\subseteq cl(int_{\omega}(H)) = \phi$.
- (2). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}$, for $H = \mathbb{Q} \cup \{\sqrt{2}\}$, $cl(int_{\omega}(H)) = cl(\mathbb{Q}) = \mathbb{R}$ and $H \subset cl(int_{\omega}(H))$. Hence H is semi- ω -open. But H is not an $\omega^{\star\star}$ - \mathcal{B} -set by (2) of Example 3.12.

Proposition 3.18. In a space (X, τ) , every $\omega^{\#}$ -t-set is an $\omega^{\star\star}$ -t-set.

Example 3.19. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}$, for $H = \mathbb{Q}^*$, $cl(int_{\omega}(H)) = cl(H) = H = int_{\omega}(H)$. Hence H is an ω^{**} -t-set. But $int(H) = \phi \neq cl(int_{\omega}(H))$. Thus H is not an $\omega^{\#}$ -t-set.

Proposition 3.20. In a space (X, τ) , every ω - $\mathcal{B}^{\star\star}$ -set is an $\omega^{\star\star}$ - \mathcal{B} -set.

Proof. It follows from Proposition 3.18.

Example 3.21. Let $X = A \cup B$ where A = (0,1) and B = (1,2) and $\tau = \{\phi, X, A, A \cap \mathbb{Q}, (A \cap \mathbb{Q}) \cup B\}$. Then for $H = (A \cap \mathbb{Q}^*) \cup (B \cap \mathbb{Q})$, $int_{\omega}(H) = A \cap \mathbb{Q}^*$ and $cl(int_{\omega}(H)) = cl(A \cap \mathbb{Q}^*) = A \cap \mathbb{Q}^* = int_{\omega}(H)$. Thus H is an ω^{**} -t-set and hence H is an ω^{**} -B-set by (2) of Remark 3.11. We prove that H is not an ω - B^{**} -set. If $H = U \cap V$ where $U \in \tau_{\omega}$ and V is an $\omega^{\#}$ -t-set, then $H \subset V$. This implies $cl(int_{\omega}(H)) \subset cl(int_{\omega}(V)) = int(V)$ by assumption. Thus $int_{\omega}(H) \subset int(V)$ and int(V) is an open set containing $int_{\omega}(H) = A \cap \mathbb{Q}^*$. So int(V) = (0, 1) or X. If int(V) = (0, 1) then $int(V) = cl(int_{\omega}(A))$ is a closed set which is a contradiction since int(V) = (0, 1) is not closed. Hence int(V) = X and V = X. Thus $H = U \cap X = U \in \tau_{\omega}$ which is a contradiction since H is not ω -open. This proves that H is not an ω - B^{**} -set.

4. New Subsets of τ_{ω}

Definition 4.1. A subset H of a space (X, τ) is called an ω^* -B-set if $H = U \cap V$, where $U \in \tau_{\omega}$ and V is an ω^* -t-set.

Remark 4.2. In a space (X, τ) ,

- (1). Every ω -open set is an ω^* - \mathcal{B} -set.
- (2). Every ω^* -t-set is an ω^* - \mathcal{B} -set.

Example 4.3. In \mathbb{R} with usual topology τ_u ,

- (1). H = (0, 1] is an ω^* -t-set and hence an ω^* - \mathcal{B} -set by (2) of Remark 4.2.
- (2). $H = \mathbb{Q}$ is not an ω^* - \mathcal{B} -set. If $H = U \cap V$ where $U \in \tau_\omega$ and V is an ω^* -t-set, then $H \subset V$ and $int_\omega(cl(H)) \subset int_\omega(cl(V))$. Hence $\mathbb{R} \subset int_\omega(cl(V)) = int_\omega(V)$ and thus $\mathbb{R} = V$ and $H = U \cap \mathbb{R} = U \in \tau_\omega$ which is a contradiction since H is not ω -open. This proves that H is not an ω^* - \mathcal{B} -set.

Remark 4.4. The converses of (1) and (2) in Remark 4.2 are not true as seen from the following Example.

Example 4.5. In \mathbb{R} with usual topology τ_u ,

- (1). H = (0, 1] is an ω^* -B-set by (1) of Example 4.3. But H is not ω -open.
- (2). $H = \mathbb{Q}^*$ is ω -open and hence an ω^* - \mathcal{B} -set by (1) of Remark 4.2. But H is not an ω^* -t-set.

Proposition 4.6. For a subset H of a space (X, τ) , the following are equivalent:

- (1). H is ω -open;
- (2). *H* is pre- ω -open and an ω^* - \mathcal{B} -set.

Proof.

 $(1) \Rightarrow (2)$: (2) follows by Remark 2.10 and (1) of Remark 4.2.

 $(2) \Rightarrow (3): \text{ Given H is an } \omega^* - \mathcal{B} \text{-set. So } H = U \cap V \text{ where } U \in \tau_{\omega} \text{ and } int_{\omega}(cl(V)) = int_{\omega}(V). \text{ Then } H \subset U = int_{\omega}(U).$ Also H is pre- ω -open implies $H \subset int_{\omega}(cl(H)) \subset int_{\omega}(cl(V)) = int_{\omega}(V)$ by assumption. Thus $H \subset int_{\omega}(U) \cap int_{\omega}(V) = int_{\omega}(U \cap V) = int_{\omega}(H)$ and hence H is ω -open. \Box

Remark 4.7. The following Example shows that the concepts of pre- ω -openness and being an ω^* - \mathcal{B} -set are independent.

Example 4.8. In \mathbb{R} with usual topology τ_u ,

- (1). $H = \mathbb{Q}$ is pre- ω -open but not an ω^* - \mathcal{B} -set by (2) of Example 4.3.
- (2). H = (0, 1] is an ω^* -B-set by (1) of Example 4.3. But H is not pre- ω -open since $H \not\subseteq int_{\omega}(cl(H)) = (0, 1)$.

Definition 4.9. A subset H of a space (X, τ) is called an ω - \mathcal{B}^* -set if $H = U \cap V$, where $U \in \tau_{\omega}$ and V is ω -t-set.

Remark 4.10. In a space (X, τ) ,

- (1). Every ω -open set is an ω - \mathcal{B}^* -set.
- (2). Every ω -t-set is an ω - \mathcal{B}^* -set.

Example 4.11. In \mathbb{R} with usual topology τ_u ,

- (1). H = (0,1] is an ω -t-set and hence an ω - \mathcal{B}^* -set by (2) of Remark 4.10.
- (2). $H = \mathbb{Q}$ is not an $\omega \mathcal{B}^*$ -set. If $H = U \cap V$ where $U \in \tau_\omega$ and V is an ω -t-set then $H \subset V$ and $int_\omega(cl(H)) \subset int_\omega(cl(V))$. Hence $\mathbb{R} \subset int_\omega(cl(V)) = int(V)$. Thus $\mathbb{R} = V$ and $H = U \cap \mathbb{R} = U \in \tau_\omega$ which is a contradiction since \mathbb{Q} is not ω -open. This proves that $H = \mathbb{Q}$ is not an $\omega - \mathcal{B}^*$ -set.

Remark 4.12. The converses of (1) and (2) in Remark 4.10 are not true as seen from the following Example.

Example 4.13. In \mathbb{R} with usual topology τ_u ,

(1). H = (0, 1] is an ω - \mathcal{B}^* -set by (1) of Example 4.11. But H is not ω -open.

(2). $H = \mathbb{Q}^*$ is ω -open and hence an ω - \mathcal{B}^* -set by (1) of Remark 4.10. But H is not an ω -t-set.

Proposition 4.14. For a subset H of a space (X, τ) , the following are equivalent:

- (1). H is ω -open;
- (2). *H* is pre- ω -open and an ω - \mathcal{B}^* -set.

Proof.

 $(1) \Rightarrow (2)$: (2) follows by Remark 2.10 and (1) of Remark 4.10.

 $(2) \Rightarrow (1): \text{ Given H is an } \omega - \mathcal{B}^{\star} \text{-set. So } H = U \cap V \text{ where } U \in \tau_{\omega} \text{ and } int_{\omega}(cl(V)) = int(V). \text{ Then } H \subset U = int_{\omega}(U).$ Also H is pre- ω -open implies $H \subset int_{\omega}(cl(H)) \subset int_{\omega}(cl(V)) = int(V)$ by assumption. Thus $H \subset int_{\omega}(U) \cap int(V) \subset int_{\omega}(U) \cap int_{\omega}(V) = int_{\omega}(U \cap V) = int_{\omega}(H)$ and hence H is ω -open. \Box

Remark 4.15. The following Example shows that the concepts of pre- ω -openness and being an ω - \mathcal{B}^{\star} -set are independent.

Example 4.16. In \mathbb{R} with usual topology τ_u ,

(1). H = (0, 1] is an $\omega - \mathcal{B}^*$ -set by (1) of Example 4.11. But H is not pre- ω -open by (2) of Example 4.8.

(2). $H = \mathbb{Q}$ is pre- ω -open by (1) of Example 4.8. But H is not an ω - \mathcal{B}^* -set by (2) of Example 4.11.

Definition 4.17. A subset H of a space (X, τ) is called

(1). ω - \mathcal{R} -closed [5] if $H = cl(int_{\omega}(H))$.

(2). ω - \mathcal{R} -open if $H = int(cl_{\omega}(H))$.

The complement of an ω - \mathcal{R} -open set is called ω - \mathcal{R} -closed.

Example 4.18. In \mathbb{R} with usual topology τ_u ,

- (1). H = [0, 1] is ω - \mathcal{R} -closed.
- (2). H = (0, 1] is not ω - \mathcal{R} -closed.

Definition 4.19. A subset H of a space (X, τ) is called a $\mathcal{H}^{\star}_{\omega}$ -set if $H = U \cap V$, where $U \in \tau_{\omega}$ and V is ω - \mathcal{R} -closed.

Remark 4.20. In a space (X, τ) ,

- (1). Every ω -open set is a $\mathcal{H}^{\star}_{\omega}$ -set.
- (2). Every ω - \mathcal{R} -closed set is a $\mathcal{H}^{\star}_{\omega}$ -set.
- (3). Every ω - \mathcal{R} -closed set is closed by definition.
- (4). A nonempty subset H is ω -R-closed if and only if $int_{\omega}(H) \neq \phi$.

Example 4.21. In \mathbb{R} with usual topology τ_u ,

- (1). H = [0, 1] is ω - \mathcal{R} -closed by (1) of Example 4.18 and hence a $\mathcal{H}^{\star}_{\omega}$ -set by (2) of Remark 4.20.
- (2). $H = \mathbb{Q}$ is not a $\mathcal{H}^{\star}_{\omega}$ -set. If $H = U \cap V$ where $U \in \tau_{\omega}$ and V is ω - \mathcal{R} -closed, then $H \subset V$. Hence $cl(H) \subset cl(V) = V$ by (3) of Remark 4.20. Thus $\mathbb{R} \subset V$ and so $\mathbb{R} = V$. Then we have $H = U \cap \mathbb{R} = U \in \tau_{\omega}$ which is a contradiction since $H = \mathbb{Q}$ is not ω -open. This proves that $H = \mathbb{Q}$ is not a $\mathcal{H}^{\star}_{\omega}$ -set.

Remark 4.22. The converses of (1) and (2) in Remark 4.20 are not true as seen from the following Example.

Example 4.23. In \mathbb{R} with usual topology τ_u ,

- (1). H = [0, 1] is $\mathcal{H}^{\star}_{\omega}$ -set by (1) of Example 4.21. But H is not ω -open.
- (2). H = (0,1) is ω -open and hence $\mathcal{H}^{\star}_{\omega}$ -set by (1) of Remark 4.20. But H is not ω - \mathcal{R} -closed.

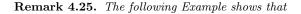
Theorem 4.24. For a subset H of space (X, τ) , the following are equivalent:

- (1). H is ω -open;
- (2). *H* is α - ω -open and a $\mathcal{H}^{\star}_{\omega}$ -set.
- (3). *H* is pre- ω -open and a $\mathcal{H}^{\star}_{\omega}$ -set.

Proof.

- $(1) \Rightarrow (2)$: (2) follows by Remark 2.10 and (1) of Remark 4.20.
- $(2) \Rightarrow (3)$: (3) follows by Remark 2.10.

 $(3) \Rightarrow (1): \text{ Given H is a } \mathcal{H}_{\omega}^{\star} \text{-set. So } H = U \cap V \text{ where } U \in \tau_{\omega} \text{ and } V = cl(int_{\omega}(V)). \text{ Then } H \subset U = int_{\omega}(U). \text{ Also H is pre-} \omega \text{-open implies } H \subset int_{\omega}(cl(H)) \subset int_{\omega}(cl(V)) = int_{\omega}(cl(int_{\omega}(V)))) \text{ (by assumption)} = int_{\omega}(cl(int_{\omega}(V))) = int_{\omega}(V). \text{ Thus } H \subset int_{\omega}(U) \cap int_{\omega}(V) = int_{\omega}(U \cap V) = int_{\omega}(H) \text{ and hence H is } \omega \text{-open.} \square$



(1). the concepts of α - ω -openness and being a $\mathcal{H}^{\star}_{\omega}$ -set are independent.

(2). the concepts of pre- ω -openness and being a $\mathcal{H}^{\star}_{\omega}$ -set are independent.

Example 4.26. (1). In \mathbb{R} with usual topology τ_u , H = [0, 1] is a $\mathcal{H}^{\star}_{\omega}$ -set by (1) of Example 4.23. But H is not α - ω -open.

(2). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{N}\}$, for $H = \mathbb{Q}$, $int_{\omega}(cl(int_{\omega}(H))) = int_{\omega}(cl(\mathbb{N})) = int_{\omega}(\mathbb{R}) = \mathbb{R}$ and so $H \subset int_{\omega}(cl(int_{\omega}(H)))$. Hence H is α - ω -open. But H is not a $\mathcal{H}^{\star}_{\omega}$ -set. If $\mathbb{Q} = H = U \cap V$ where $U \in \tau_{\omega}$ and V is ω - \mathcal{R} -closed, then we have $H \subset V$ and $cl(H) \subset cl(V) = V$ by (3) of Remark 4.20. Thus $\mathbb{R} \subset V$ and so $\mathbb{R} = V$. Then we have $H = U \cap \mathbb{R} = U \in \tau_{\omega}$ which is a contradiction since H is not ω -open. This proves that H is not a $\mathcal{H}^{\star}_{\omega}$ -set.

Example 4.27.

- (1). In \mathbb{R} with usual topology τ_u , H = [0, 1] is a \mathcal{H}^*_{ω} -set by (1) of Example 4.26. But H is not pre- ω -open.
- (2). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{N}\}, H = \mathbb{Q}$ is pre- ω -open but not a $\mathcal{H}^{\star}_{\omega}$ -set by (2) of Example 4.26.

Definition 4.28. A subset H of a space (X, τ) is called an ω - $\mathcal{AB}^{\#}$ -set if $H = U \cap V$, where $U \in \tau_{\omega}$ and V is semi- ω -regular.

Remark 4.29. In a space (X, τ) ,

- (1). Every ω -open set is an ω - $\mathcal{AB}^{\#}$ -set.
- (2). Every semi- ω -regular set is an ω - $\mathcal{AB}^{\#}$ -set.

Example 4.30. In \mathbb{R} with usual topology τ_u ,

- (1). H = (0, 1] is both semi- ω -open and an ω^* -t-set. So H is semi- ω -regular and hence an ω - $\mathcal{AB}^{\#}$ -set by (2) of Remark 4.29.
- (2). $H = \mathbb{Q}$ is not an $\omega -\mathcal{AB}^{\#}$ -set. If $H = U \cap V$ where $U \in \tau_{\omega}$ and V is semi- ω -regular, then $H \subset V$ and $int_{\omega}(cl(H)) \subset int_{\omega}(cl(V)) = int_{\omega}(V)$ by assumption. Hence $\mathbb{R} \subset int_{\omega}(V) \subset V$ and $\mathbb{R} = V$. Thus $H = U \cap \mathbb{R} = U \in \tau_{\omega}$ which is a contradiction since H is not ω -open. This proves that $H = \mathbb{Q}$ is not an ω - $\mathcal{AB}^{\#}$ -set.

Remark 4.31. The converses of (1) and (2) in Remark 4.29 are not true as seen from the following Example.

Example 4.32.

- (1). In \mathbb{R} with usual topology τ_u , H = (0, 1] is $\omega \mathcal{AB}^{\#}$ -set by (1) of Example 4.30. But H is not ω -open.
- (2). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}$, $H = \mathbb{Q}$ is ω -open and hence an ω - $\mathcal{AB}^{\#}$ -set by (1) of Remark 4.29. But $int_{\omega}(H) = H$ and $int_{\omega}(cl(H)) = int_{\omega}(\mathbb{R}) = \mathbb{R}$ and $int_{\omega}(H) \neq int_{\omega}(cl(H))$. Thus H is not an ω^* -t-set and hence not semi- ω -regular.

Theorem 4.33. For a subset H of a space (X, τ) , the following are equivalent:

- (1). H is ω -open;
- (2). *H* is α - ω -open and an ω - $\mathcal{AB}^{\#}$ -set.
- (3). *H* is pre- ω -open and an ω - $\mathcal{AB}^{\#}$ -set.

Proof.

 $(1) \Rightarrow (2)$: (2) follows by Remark 2.10 and (1) of Remark 4.29.

 $(2) \Rightarrow (3)$: (3) follows by Remark 2.10.

 $(3)\Rightarrow(1)$: Given H is an ω - $\mathcal{AB}^{\#}$ -set. So $H = U \cap V$ where $U \in \tau_{\omega}$ and V is semi- ω -regular. Then $H \subset U = int_{\omega}(U)$. Also H is pre- ω -open implies $H \subset int_{\omega}(cl(H)) \subset int_{\omega}(cl(V)) = int_{\omega}(V)$ by assumption. Thus $H \subset int_{\omega}(U) \cap int_{\omega}(V) = int_{\omega}(U \cap V) = int_{\omega}(H)$ and hence H is ω -open.

Remark 4.34. The following Example shows that

- (1). the concepts of α - ω -openness and being an ω - $\mathcal{AB}^{\#}$ -set are independent.
- (2). the concepts of pre- ω -openness and being an ω - $\mathcal{AB}^{\#}$ -set are independent.

Example 4.35.

- (1). In \mathbb{R} with usual topology τ_u , H = (0,1] is an ω - $\mathcal{AB}^{\#}$ -set by (1) of Example 4.32. But H is not α - ω -open.
- (2). In \mathbb{R} with topology $\tau = \{\phi, \mathbb{R}, \mathbb{N}\}$, for $H = \mathbb{Q}$, $int_{\omega}(cl(int_{\omega}(H))) = int_{\omega}(cl(\mathbb{N})) = int_{\omega}(\mathbb{R}) = \mathbb{R} \supset H$. Thus H is α - ω -open. But H is not an ω - $\mathcal{AB}^{\#}$ -set. If $H = U \cap V$ where $U \in \tau_{\omega}$ and V is semi- ω -regular then $H \subset V$ and $int_{\omega}(cl(H)) \subset int_{\omega}(cl(V)) = int_{\omega}(V)$ by assumption. Hence $\mathbb{R} \subset int_{\omega}(V) \subset V$ and $V = \mathbb{R}$. Thus $H = U \cap \mathbb{R} = U \in \tau_{\omega}$ which is a contradiction since H is not ω -open. This proves that $H = \mathbb{Q}$ is not an ω - $\mathcal{AB}^{\#}$ -set.
- (3). In \mathbb{R} with usual topology τ_u , $H = \mathbb{Q}$ is pre- ω -open but not an ω - $\mathcal{AB}^{\#}$ -set by (2) of Example 4.30.
- (4). In \mathbb{R} with usual topology τ_u , H = (0, 1] is an $\omega \mathcal{AB}^{\#}$ -set but not pre- ω -open.

5. ω -extremally Disconnected Space

Definition 5.1. A subset H of a space (X, τ) is called locally ω -closed if $H = U \cap V$, where $U \in \tau_{\omega}$ and V is closed.

Remark 5.2. In a space (X, τ) ,

- (1). Every ω -open set is locally ω -closed.
- (2). Every closed set is locally ω -closed.

Example 5.3.

- (1). In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}, H = \mathbb{Q}$ is ω -open and hence locally ω -closed by (1) of Remark 5.2.
- (2). In \mathbb{R} with usual topology τ_u , $H = \mathbb{Q}$ is not locally ω -closed. If $H = U \cap V$ where $U \in \tau_\omega$ and V is closed, then we have $H \subset V$ and $cl(H) \subset cl(V) = V$ by assumption. Thus $\mathbb{R} \subset V$ and so $\mathbb{R} = V$. But $H = U \cap \mathbb{R} = U \in \tau_\omega$ which is a contradiction since $H = \mathbb{Q}$ is not ω -open. This proves that $H = \mathbb{Q}$ is not locally ω -closed.

Remark 5.4. The converses of (1) and (2) in Remark 5.2 are not true as seen from the following Example.

Example 5.5. In \mathbb{R} with usual topology τ_u ,

- (1). H = [0, 1] is closed and hence locally ω -closed by (2) of Remark 5.2. But H is not ω -open.
- (2). $H = \mathbb{Q}^*$ is ω -open and hence locally ω -closed by (1) of Remark 5.2. But H is not closed since $H \neq cl(H) = \mathbb{R}$.

Proposition 5.6. For a subset H of a space (X, τ) , the following are equivalent:

- (1). H is ω -open;
- (2). H is pre- ω -open and locally ω -closed.

Proof.

 $(1) \Rightarrow (2)$: (2) follows by Remark 2.10 and (1) of Remark 5.2.

(2) \Rightarrow (1): Given H is locally ω -closed. So $H = U \cap V$ where $U \in \tau_{\omega}$ and cl(V) = V. Then $H \subset U = int_{\omega}(U)$. Also H is pre- ω -open implies $H \subset int_{\omega}(cl(H)) \subset int_{\omega}(cl(V)) = int_{\omega}(V)$ by assumption. Thus $H \subset int_{\omega}(U) \cap int_{\omega}(V) = int_{\omega}(U \cap V) = int_{\omega}(H)$ and hence H is ω -open.

Remark 5.7. The following Example shows that the concepts of pre- ω -openness and locally ω -closedness are independent.

Example 5.8. In \mathbb{R} with usual topology τ_u ,

(1). H = [0, 1] is closed and hence locally ω -closed by (2) of Remark 5.2. But H is not pre- ω -open.

(2). $H = \mathbb{Q}$ is pre- ω -open but not locally ω -closed, by (2) of Example 5.3.

Proposition 5.9. Every locally closed set is locally ω -closed.

Proof. It follows from the fact that every open set is ω -open.

The converse of Proposition 5.9 is not true follows from the following Example.

Example 5.10. In \mathbb{R} with usual topology τ_u , $H = \mathbb{Q}^*$ is locally ω -closed by (2) of Example 5.5. If $H = U \cap V$ where U is open and V is closed, then $H \subseteq V$ and $cl(H) \subseteq cl(V) = V$ by assumption on V. Thus $\mathbb{R} \subseteq V$ and so $V = \mathbb{R}$. Then $H = U \cap \mathbb{R} = U$ which implies that H is open. This is a contradiction since $H = \mathbb{Q}^*$ is not open. Thus $H = \mathbb{Q}^*$ is not locally closed.

Definition 5.11. A subset H of a space (X, τ) is called strong β - ω -open if $H \subset cl(int_{\omega}(cl_{\omega}(H)))$.

Example 5.12. In \mathbb{R} with usual topology τ_u ,

(1). H = (0, 1] is strong β - ω -open.

(2). $H = \mathbb{Q}$ is not strong β - ω -open.

Proposition 5.13. In a space (X, τ) , every strong β - ω -open set is β - ω -open.

Proof. Let H be a strong β - ω -open set. Then $H \subset cl(int_{\omega}(cl_{\omega}(H))) \subset cl(int_{\omega}(cl(H)))$. Thus H is β - ω -open.

Example 5.14. In \mathbb{R} with usual topology τ_u , $H = \mathbb{Q}$ is β - ω -open set but not strong β - ω -open.

Proposition 5.15. In a space (X, τ) , every semi- ω -open set is strong β - ω -open.

Proof. Let H be a semi- ω -open set. Then $H \subset cl(int_{\omega}(H)) \subset cl(int_{\omega}(cl_{\omega}(H)))$. Thus H is a strong β - ω -open.

Example 5.16. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$, $H = \mathbb{Q}^*_+$ is strong β - ω -open but not semi- ω -open. For, $cl_{\omega}(H) = \mathbb{R}$ and $cl(int_{\omega}(cl_{\omega}(H))) = cl(int_{\omega}(\mathbb{R})) = cl(\mathbb{R}) = \mathbb{R}$. Thus $H \subset cl(int_{\omega}(cl_{\omega}(H)))$ and hence H is strong β - ω -open. But $int_{\omega}(H) = \phi$ and $cl(int_{\omega}(H)) = cl(\phi) = \phi$. Thus $H \nsubseteq cl(int_{\omega}(H))$ and hence H is not semi ω -open.

Definition 5.17. A space (X, τ) is called ω -extremally disconnected if the closure of every ω -open subset H of X is ω -open.

Theorem 5.18. For a space (X, τ) , the following are equivalent:

- (1). X is ω -extremally disconnected.
- (2). int(H) is ω -closed for every ω -closed subset H of X.

(3). $cl(int_{\omega}(H)) \subset int_{\omega}(cl(H))$ for every subset H of X.

- (4). Every semi- ω -open set is pre- ω -open.
- (5). The closure of every strong β - ω -open subset of X is ω -open.
- (6). Every strong β - ω -open set is pre- ω -open.

(7). For every subset H of X, H is α - ω -open if and only if it is semi- ω -open.

Proof.

(1) \Rightarrow (2): Let $H \subset X$ be a ω -closed. Then $X \setminus H$ is ω -open. By (1), $cl(X \setminus H) = X \setminus int(H)$ is ω -open. Thus, int(H) is ω -closed.

 $(2) \Rightarrow (3)$: Let H be any subset of X. Then $X \setminus int_{\omega}(H)$ is ω -closed in X and by (2), $int(X \setminus int_{\omega}(H))$ is ω -closed in X. Therefore $cl(int_{\omega}(H))$ is ω -open in X and $cl(int_{\omega}(H)) \subset int_{\omega}(cl(H))$.

 $(3) \Rightarrow (4)$: Let H be semi- ω -open. Then $H \subset cl(int_{\omega}(H))$ and by $(3), H \subset int_{\omega}(cl(H))$. Thus, H is pre- ω -open.

 $(4) \Rightarrow (5)$: Let H be a strong β - ω -open set. Then $H \subset cl(int_{\omega}(cl_{\omega}(H)))$ and $cl(H) \subset cl(cl(int_{\omega}(cl_{\omega}(H)))) = cl(int_{\omega}(cl_{\omega}(H))) \subset cl(int_{\omega}(cl(H)))$. Thus cl(H) is semi- ω -open. By (4), cl(H) is pre- ω -open. So $cl(H) \subset int_{\omega}(cl(cl(H))) = int_{\omega}(cl(H))$. Hence cl(H) is ω -open.

(5) \Rightarrow (6): Let H be strong β - ω -open. By (5), $cl(H) = int_{\omega}(cl(H))$ and $H \subset cl(H)$. Hence $H \subset int_{\omega}(cl(H))$ and thus H is pre- ω -open.

(6) \Rightarrow (7): Let H be semi- ω -open. Since a semi- ω -open set is strong β - ω -open by Proposition 5.15 and by (6) it is pre- ω -open. Since H is semi- ω -open and pre- ω -open, by Theorem 2.11, H is α - ω -open.

Conversely, the result follows from the fact that every α - ω -open set is semi- ω -open.

 $(7)\Rightarrow(1)$: Let H be an ω -open set of X. Then $H = int_{\omega}(H)$ and $cl(H) = cl(int_{\omega}(H)) \subset cl(int_{\omega}(cl(H)))$. Thus cl(H) is semi- ω -open and by (7), cl(H) is α - ω -open. Therefore $cl(H) \subset int_{\omega}(cl(int_{\omega}(cl(H)))) = int_{\omega}(cl(H))$ and hence $cl(H) = int_{\omega}(cl(H))$. Hence cl(H) is ω -open and X is ω -extremally disconnected.

Theorem 5.19. For an ω -extremally disconnected space (X, τ) , the following are equivalent:

- (1). H is an ω -open.
- (2). H is α - ω -open and a locally ω -closed.
- (3). H is pre- ω -open and a locally ω -closed.
- (4). H is semi- ω -open and a locally ω -closed.
- (5). *H* is b- ω -open and a locally ω -closed.

Proof.

 $(1) \Rightarrow (2); (2) \Rightarrow (3); (2) \Rightarrow (4); (3) \Rightarrow (5) and (4) \Rightarrow (5): Obvious by Remark 2.10 and (1) of Remark 5.2.$

 $(5) \Rightarrow (1): \text{ Since H is b-ω-open in X, it follows that } H \subset cl(int_{\omega}(H)) \cup int_{\omega}(cl(H)). \text{ Since H is locally ω-closed, there exists an ω-open set G such that } H = G \cap cl(H) \text{ and } H \subset G. \text{ It follows from Theorem 5.18(3) that } H \subset G \cap [cl(int_{\omega}(H))] \cup [int_{\omega}(cl(H))] = [G \cap cl(int_{\omega}(H))] \cup [G \cap int_{\omega}(cl(H))] \subset [G \cap int_{\omega}(cl(H))] \cup [G \cap int_{\omega}(cl(H))] = G \cap int_{\omega}(cl(H)) = int_{\omega}(G) \cap cl(H)) = int_{\omega}(H). \text{ Thus, } H = int_{\omega}(H) \text{ and hence H is ω-open in X. } \square$

6. Decompositions of ω -continuity

Definition 6.1 ([3]). A function $f : X \to Y$ is called pre- ω -continuous (resp. α - ω -continuous, ω -continuous) if $f^{-1}(V)$ is pre- ω -open (resp. α - ω -open, ω -open) in X for each open set V in Y.

Definition 6.2 ([4]). A function $f : X \to Y$ is called semi- ω -continuous if $f^{-1}(V)$ is semi- ω -open in X for each open set V in Y.

Definition 6.3. A function $f : X \to Y$ is called $\omega \cdot \mathcal{B}^{\star\star}$ -continuous (resp. $\omega^{\star\star} \cdot \mathcal{B}$ -continuous, $\omega^{\star} \cdot \mathcal{B}$ -continuous, $\omega \cdot \mathcal{A}\mathcal{B}^{\#}$ -continuous, contra locally ω -continuous) if $f^{-1}(V)$ is an $\omega \cdot \mathcal{B}^{\star\star}$ -set (resp. an $\omega^{\star\star} \cdot \mathcal{B}$ -set, an $\omega^{\star} \cdot \mathcal{B}$ -set, an $\omega \cdot \mathcal{A}\mathcal{B}^{\#}$ -set, an $\omega \cdot \mathcal{A}\mathcal{B}^{\#}$ -set, a locally ω -closed set) in X for each open set V in Y.

Theorem 6.4. For a function $f : X \to Y$, the following are equivalent:

(1). f is ω -continuous.

- (2). f is semi- ω -continuous and ω - $\mathcal{B}^{\star\star}$ -continuous.
- *Proof.* This is an immediate consequence of Proposition 3.6.

Theorem 6.5. For a function $f : X \to Y$, the following are equivalent:

- (1). f is ω -continuous.
- (2). f is semi- ω -continuous and $\omega^{\star\star}$ - \mathcal{B} -continuous.
- *Proof.* This is an immediate consequence of Proposition 3.15.
- **Theorem 6.6.** For a function $f : X \to Y$, the following are equivalent:
- (1). f is ω -continuous.
- (2). f is pre- ω -continuous and ω^* - \mathcal{B} -continuous.
- *Proof.* This is an immediate consequence of Proposition 4.6.

Theorem 6.7. For a function $f : X \to Y$, the following are equivalent:

- (1). f is ω -continuous.
- (2). f is pre- ω -continuous and ω - \mathcal{B}^{\star} -continuous.
- *Proof.* This is an immediate consequence of Proposition 4.14.

Theorem 6.8. For a function $f : X \to Y$, the following are equivalent:

- (1). f is ω -continuous.
- (2). f is α - ω -continuous and $\mathcal{H}^{\star}_{\omega}$ -continuous.
- (3). f is pre- ω -continuous and $\mathcal{H}^{\star}_{\omega}$ -continuous.
- *Proof.* This is an immediate consequence of Theorem 4.24.

Theorem 6.9. For a function $f : X \to Y$, the following are equivalent:

- (1). f is ω -continuous.
- (2). f is α - ω -continuous and ω - $\mathcal{AB}^{\#}$ -continuous.
- (3). f is pre- ω -continuous and ω - $\mathcal{AB}^{\#}$ -continuous.
- *Proof.* This is an immediate consequence of Theorem 4.33.
- **Theorem 6.10.** For a function $f : X \to Y$, the following are equivalent:
- (1). f is ω -continuous.
- (2). f is pre- ω -continuous and contra locally ω -continuous.
- *Proof.* This is an immediate consequence of Proposition 5.6.

References

- [1] M.Ganster and I.L.Reilly, Locally closed sets and LC-continuous functions, Intern. J. Math. Math. Sci., 3(1989), 417-424.
- [2] H.Z.Hdeib, ω-closed mappings, Revista Colomb. De Matem., 16(1982), 65-78.
- [3] T.Noiri, A.Al-Omari and M.S.M.Noorani, Weak forms of ω-open sets and decompositions of continuity, Eur. J. Pure Appl. Math, 2(1)(2009), 73-84.
- [4] O.Ravi, M.Paranjothi, I.Rajasekaran and S.Satheesh Kanna, ω-open sets and decompositions of continuity, Bulletin of the International Mathematical Virtual Institute, 6(2)(2016), 143-155.
- [5] O.Ravi, I.Rajasekaran, S.Satheesh Kanna and M.Paranjothi, New generalized classes of τ_{ω} , Eur. J. Pure Appl. Math., 9(2)(2016), 152-164.
- [6] S.Willard, General Topology, Addison-Wesley, Reading, Mass, USA, (1970).