

International Journal of Current Research in Science and Technology

Strongly \mathcal{I}_q -*-closed Sets

Research Article

V.P.Anuja¹, R.Premkumar² and O.Ravi^{2*}

1 Department of Mathematics, Arulmigu Palaniandavar Arts College for Women, Palani, Dindigul District, Tamil Nadu, India.

- 2 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
- Abstract: In [14], the notion of strongly \mathcal{I}_{g} - \star -closed sets is introduced in ideal topological spaces. Characterizations and properties of strongly \mathcal{I}_{g} - \star -closed sets and strongly \mathcal{I}_{g} - \star -open sets are given. A characterization of normal spaces is given in terms of strongly \mathcal{I}_{g} - \star -open sets. Also, it is established that a strongly \mathcal{I}_{g} - \star -closed subset of an \mathcal{I} -compact space is \mathcal{I} -compact.

MSC: 54A05, 54A10.

Keywords: Strongly *g*-*-closed set, strongly \mathcal{I}_g -*-closed set, *-*g*-closed set, \mathcal{I} -compact space. © JS Publication.

1. Introduction and Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $H\subseteq X$, cl(H) and int(H) will, respectively, denote the closure and interior of H in (X, τ) . A subset H of a space (X, τ) is an α -open [17] (resp. semi-open [10], preopen [13]) set if $H\subseteq int(cl(int(H)))$ (resp. $H\subseteq cl(int(H))$, $H\subseteq int(cl(H))$). The family of all α -open sets in (X, τ) , denoted by τ^{α} , is a topology on X finer than τ . The closure of H in (X, τ^{α}) is denoted by α -cl(H).

Definition 1.1. A subset H of a space (X, τ) is said to be g-closed [11] if $cl(H) \subseteq U$ whenever $H \subseteq U$ and U is open in X.

An ideal \mathcal{I} on a space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$. Given a space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \rightarrow \wp(X)$, called a local function [9] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [[7], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator cl^{*}(.) for a topology $\tau^*(\mathcal{I},\tau)$, called the \star -topology, finer than τ is defined by cl^{*}(A)=A \cup A^*(\mathcal{I},\tau) [19]. When there is no chance for confusion, we will simply write A^{*} for A^{*}(\mathcal{I},τ) and τ^* for $\tau^*(\mathcal{I},\tau)$. int^{*}(A) will denote the interior of A in (X, τ^*) . If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space or an ideal space. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) .

Definition 1.2. A subset H of an ideal topological space (X, τ, \mathcal{I}) is called \star -closed [7] (resp. \star -dense in itself [5]) if $H^* \subseteq H$ (resp. $H \subseteq H^*$). The complement of a \star -closed set is called \star -open.

Definition 1.3. A subset H of an ideal topological space (X, τ, \mathcal{I}) is called \mathcal{I}_g -closed [2] if $H^* \subseteq U$ whenever $H \subseteq U$ and U is open.

E-mail: siingam@yahoo.com

Definition 1.4. A subset H of an ideal space (X, τ, \mathcal{I}) is said to be

- (1). \star -g-closed [12] if $cl(H) \subseteq U$ whenever $H \subseteq U$ and U is \star -open,
- (2). \star -g-open [12] if its complement is \star -g-closed,
- (3). strongly g-*-closed [1] if $cl(H) \subseteq U$ whenever $H \subseteq U$ and U is *-g-open.

Recall that every open set is \star -g-open but not conversely.

Remark 1.5 ([1]). For a subset of an ideal topological space, the following properties hold:

- (1). Every closed set is strongly $g \rightarrow -closed$ but not conversely.
- (2). Every strongly $g \rightarrow closed$ set is g-closed but not conversely.
- **Definition 1.6.** An ideal \mathcal{I} is said to be
- (1). codense [3] or τ -boundary [16] if $\tau \cap \mathcal{I} = \{\phi\}$,
- (2). completely codense [3] if $PO(X) \cap \mathcal{I} = \{\phi\}$, where PO(X) is the family of all preopen sets in (X, τ) .

Lemma 1.7 ([3]). Every completely codense ideal is codense but not conversely.

Lemma 1.8 ([7]). Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- (1). $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- (2). $A^* = cl(A^*) \subseteq cl(A)$,
- (3). $(A^*)^* \subseteq A^*$,
- $(4). \ (A \cup B)^* = A^* \cup B^*,$
- (5). $(A \cap B)^* \subseteq A^* \cap B^*$.

Lemma 1.9 ([18]). Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$.

Lemma 1.10 ([18]). Let (X, τ, \mathcal{I}) be an ideal topological space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X.

Lemma 1.11 ([18]). Let (X, τ, \mathcal{I}) be an ideal topological space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$.

Definition 1.12 ([2]). An ideal topological space (X, τ, \mathcal{I}) is called $T_{\mathcal{I}}$ if every \mathcal{I}_g -closed subset of X is \star -closed in X.

Lemma 1.13 ([15]). If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ ideal topological space and A is an \mathcal{I}_g -closed set, then A is a \star -closed set.

Lemma 1.14 ([2]). Every g-closed set is \mathcal{I}_g -closed but not conversely.

2. Properties of Strongly \mathcal{I}_q -*-closed Sets

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1). strongly \mathcal{I}_g -*-closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is *-g-open,
- (2). strongly \mathcal{I}_g -*-open if its complement is strongly \mathcal{I}_g -*-closed.

Theorem 2.2. If (X, τ, \mathcal{I}) is any ideal space, then every strongly \mathcal{I}_q -*-closed set is \mathcal{I}_q -closed.

Proof. It follows from the fact that every open set is \star -g-open.

The converse of Theorem 2.2 is not true in general as shown in the following Example.

Example 2.3. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. Then strongly \mathcal{I}_g - \star -closed sets are $\phi, X, \{a\}, \{b, c\}$ and \mathcal{I}_g -closed sets are $\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$. Clearly $\{b\}$ is \mathcal{I}_g -closed but not strongly \mathcal{I}_g - \star -closed.

Proposition 2.4. If A is \star -g-closed of (X, τ, \mathcal{I}) and B is closed in (X, τ) , then $A \cap B$ is \star -g-closed in (X, τ, \mathcal{I}) .

Proof. Let U be an *-open in (X, τ, \mathcal{I}) such that $A \cap B \subseteq U$. Put W = X - B. Then $A \subseteq U \cup W \in \tau^*$. Since A is *-g-closed, $cl(A) \subseteq U \cup W$. Now $cl(A \cap B) \subset cl(A) \cap cl(B) \subseteq (U \cup W) \cap B = (U \cap B) \cup (W \cap B) = U \cap B \subseteq U$. Hence $A \cap B$ is *-g-closed.

The following Theorem gives characterizations of strongly \mathcal{I}_{g} - \star -closed sets.

Theorem 2.5. If (X, τ, \mathcal{I}) is any ideal topological space and $A \subseteq X$, then the following are equivalent.

- (1). A is strongly \mathcal{I}_g - \star -closed,
- (2). $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is \star -g-open in X,
- (3). $cl^*(A) A$ contains no nonempty \star -g-closed set,
- (4). A^*-A contains no nonempty \star -g-closed set.

Proof. (1) \Rightarrow (2) Let $A \subseteq U$ where U is \star -g-open in X. Since A is strongly \mathcal{I}_g - \star -closed, $A^* \subseteq U$ and so $cl^*(A) = A \cup A^* \subset U$.

 $(2) \Rightarrow (3) \text{ Let F be a } \star -g \text{-closed subset such that } F \subseteq cl^*(A) - A. \text{ Then F } \subseteq cl^*(A). \text{ Also F } \subseteq cl^*(A) - A \subseteq X - A \text{ and hence}$ A $\subseteq X - F$ where X - F is $\star -g$ -open. By (2) $cl^*(A) \subseteq X - F$ and so $F \subseteq X - cl^*(A).$ Thus $F \subseteq cl^*(A) \cap X - cl^*(A) = \phi.$ (3) \Rightarrow (4) $A^* - A = A \cup A^* - A = cl^*(A) - A$ which has no nonempty $\star -g$ -closed subset by (3).

(4) \Rightarrow (1) Let $A \subseteq U$ where U is \star -g-open. Then $X - U \subseteq X - A$ and so $A^* \cap (X - U) \subseteq A^* \cap (X - A) = A^* - A$. Since A^* is always a closed subset and X - U is \star -g-closed, $A^* \cap (X - U)$ is a \star -g-closed set contained in $A^* - A$ and hence $A^* \cap (X - U) = \phi$ by (4). Thus $A^* \subseteq U$ and A is strongly \mathcal{I}_g - \star -closed.

Theorem 2.6. Every \star -closed set is strongly \mathcal{I}_g - \star -closed.

Proof. Let A be a *-closed. To prove A is strongly \mathcal{I}_g -*-closed, let U be any *-g-open set such that A \subseteq U. Since A is *-closed, A* \subseteq A \subseteq U. Thus A is strongly \mathcal{I}_g -*-closed.

The converse of Theorem 2.6 is not true in general as shown in the following Example.

Example 2.7. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{d\}, \{a, c\}, \{a, c, d\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{d\}, \{a, d\}\}$. Then strongly $\mathcal{I}_g \rightarrow \text{-closed}$ sets are ϕ , X, $\{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}$ and $\star \text{-closed}$ sets are ϕ , X, $\{a\}, \{b\}, \{d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c\}, \{a, c, c\},$

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal topological space. For every $A \in \mathcal{I}$, A is strongly \mathcal{I}_q -*-closed.

Proof. Let $A \in \mathcal{I}$ and let $A \subseteq U$ where U is \star -g-open. Since $A \in \mathcal{I}$, $A^* = \phi \subseteq U$. Thus A is strongly \mathcal{I}_{q} - \star -closed.

Theorem 2.9. If (X, τ, \mathcal{I}) is an ideal topological space, then A^* is always strongly \mathcal{I}_q -*-closed for every subset A of X.

Proof. Let $A^* \subseteq U$ where U is \star -g-open. Since $(A^*)^* \subseteq A^*$ [7], we have $(A^*)^* \subseteq U$. Hence A^* is strongly \mathcal{I}_{g} - \star -closed. \Box

Theorem 2.10. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every strongly \mathcal{I}_g - \star -closed, \star -g-open set is \star -closed.

Proof. Let A be strongly \mathcal{I}_{g} -*-closed and *-g-open. We have $A \subseteq A$ where A is *-g-open. Since A is strongly \mathcal{I}_{g} -*-closed, $A^* \subseteq A$. Thus A is *-closed.

Corollary 2.11. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ ideal topological space and A is a strongly \mathcal{I}_g -*-closed set, then A is *-closed set.

Proof. By assumption A is strongly \mathcal{I}_{g} - \star -closed in (X, τ, \mathcal{I}) and so by Theorem 2.2, A is \mathcal{I}_{g} -closed. Since (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ -space, by Definition 1.12, A is \star -closed.

Corollary 2.12. Let (X, τ, \mathcal{I}) be an ideal topological space and A be a strongly \mathcal{I}_g - \star -closed set. Then the following are equivalent.

- (1). A is a \star -closed set,
- (2). $cl^*(A) A$ is a \star -g-closed set,
- (3). $A^* A$ is a \star -g-closed set.

Proof. (1) \Rightarrow (2) By (1) A is \star -closed. Hence $A^* \subseteq A$ and $cl^*(A) - A = (A \cup A^*) - A = \phi$ which is a \star -g-closed set. (2) \Rightarrow (3) $A^* - A = A \cup A^* - A = cl^*(A) - A$ which is a \star -g-closed set by (2).

(3) \Rightarrow (1) Since A is strongly \mathcal{I}_{g} - \star -closed, by Theorem 2.5(4), A^{*} – A contains no non-empty \star -g-closed set. By assumption (3) A^{*} – A is \star -g-closed and hence A^{*} – A = ϕ . Thus A^{*} \subseteq A and A is \star -closed.

Theorem 2.13. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every strongly g-*-closed set is a strongly \mathcal{I}_g -*-closed set.

Proof. Let A be a strongly g-*-closed set. Let U be any *-g-open set such that $A \subseteq U$. Since A is strongly g-*-closed, cl(A) \subseteq U. So, $A^* \subseteq$ cl(A) \subseteq U and thus A is strongly \mathcal{I}_{g} -*-closed.

The converse of Theorem 2.13 is not true in general as shown in the following Example.

Example 2.14. In Example 2.7, strongly g- \star -closed sets are ϕ , X, $\{b\}$, $\{a, b\}$, $\{b, c\}$, $\{b, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c\}$, $\{b, c\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c\}$, $\{b, c\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c\}$, $\{b, c\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c\}$, $\{b, c\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c\}$, $\{b, c\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c\}$, $\{b, c\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c\}$, $\{b, c\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{b, c\}$,

Theorem 2.15. If (X, τ, \mathcal{I}) is an ideal topological space and A is a \star -dense in itself, strongly \mathcal{I}_g - \star -closed subset of X, then A is strongly g- \star -closed.

Proof. Let $A \subseteq U$ where U is \star -g-open. Since A is strongly \mathcal{I}_g - \star -closed, $A^* \subseteq U$. As A is \star -dense in itself, by Lemma 1.9, $cl(A) = A^*$. Thus $cl(A) \subseteq U$ and hence A is strongly g- \star -closed.

Corollary 2.16. If (X, τ, \mathcal{I}) is any ideal topological space where $\mathcal{I} = \{\phi\}$, then A is strongly \mathcal{I}_g -*-closed if and only if A is strongly g-*-closed.

Proof. In (X, τ, \mathcal{I}) , if $\mathcal{I} = \{\phi\}$ then $A^* = cl(A)$ for the subset A. A is strongly \mathcal{I}_g -*-closed $\Leftrightarrow A^* \subseteq U$ whenever $A \subseteq U$ and U is *-g-open $\Leftrightarrow cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *-g-open $\Leftrightarrow A$ is strongly g-*-closed.

Corollary 2.17. In an ideal topological space (X, τ, \mathcal{I}) where \mathcal{I} is codense, if A is a semi-open and strongly \mathcal{I}_g -*-closed subset of X, then A is strongly g-*-closed.

Proof. By Lemma 1.10, A is *-dense in itself. By Theorem 2.15, A is strongly g-*-closed.

Example 2.18. In Example 2.3, g-closed sets are ϕ , X, $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$. Clearly $\{b\}$ is g-closed but not strongly \mathcal{I}_{q} -*-closed.

Example 2.19. In Example 2.7, g-closed sets are ϕ , X, {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}. Clearly {a} is strongly \mathcal{I}_g -*-closed but not g-closed.

Remark 2.20. We see that from Examples 2.18 and 2.19, g-closed sets and strongly \mathcal{I}_{g} - \star -closed sets are independent.

Remark 2.21. We have the following implications for the subsets stated above.

Theorem 2.22. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is strongly \mathcal{I}_g -*-closed if and only if A = F - N where F is *-closed and N contains no nonempty *-g-closed set.

Proof. If A is strongly \mathcal{I}_{g} -*-closed, then by Theorem 2.5(4), N=A*-A contains no nonempty *-g-closed set. If F=cl*(A), then F is *-closed such that $F-N=(A\cup A^*)-(A^*-A)=(A\cup A^*)\cap(A^*\cap A^c)^c=(A\cup A^*)\cap((A^*)^c\cup A)=(A\cup A^*)\cap(A\cup (A^*)^c)=A\cup(A^*\cap (A^*)^c)=A$.

Conversely, suppose A=F-N where F is \star -closed and N contains no nonempty \star -g-closed set. Let U be an \star -g-open set such that $A\subseteq U$. Then $F-N\subseteq U$ which implies that $F\cap(X-U)\subseteq N$. Now $A\subseteq F$ and $F^*\subseteq F$ then $A^*\subseteq F^*$ and so $A^*\cap(X-U)\subseteq F^*\cap(X-U)\subseteq F\cap(X-U)\subseteq N$. Since $A^*\cap(X-U)$ is \star -g-closed, by hypothesis $A^*\cap(X-U)=\phi$ and so $A^*\subseteq U$. Hence A is strongly \mathcal{I}_g - \star -closed.

Theorem 2.23. Let (X, τ, \mathcal{I}) be an ideal topological space and $A, B \subseteq X$. If $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and B is \star -dense in itself.

Proof. Since $A \subseteq B$, then $A^* \subseteq B^*$ and since $B \subseteq A^*$, then $B^* \subseteq (A^*)^* \subseteq A^*$. Therefore $A^* = B^*$ and $B \subseteq A^* \subseteq B^*$. Hence B is \star -dense in itself.

Theorem 2.24. Let (X, τ, \mathcal{I}) be an ideal topological space. If A and B are subsets of X such that $A \subseteq B \subseteq cl^*(A)$ and A is strongly \mathcal{I}_g - \star -closed, then B is strongly \mathcal{I}_g - \star -closed.

Proof. Since A is strongly \mathcal{I}_{g} - \star -closed, then by Theorem 2.5(3), cl^{*}(A)-A contains no nonempty \star -g-closed set. But cl^{*}(B)-B \subseteq cl^{*}(A)-A and so cl^{*}(B)-B contains no nonempty \star -g-closed set. Hence B is strongly \mathcal{I}_{g} - \star -closed.

Corollary 2.25. Let (X, τ, \mathcal{I}) be an ideal topological space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is strongly \mathcal{I}_g -*-closed, then A and B are strongly g-*-closed sets.

Proof. Let A and B be subsets of X such that $A \subseteq B \subseteq A^*$. Then $A \subseteq B \subseteq A^* \subseteq cl^*(A)$. Since A is strongly \mathcal{I}_g -*-closed, by Theorem 2.24, B is strongly \mathcal{I}_g -*-closed. Since $A \subseteq B \subseteq A^*$, we have $A^* = B^*$. Hence $A \subseteq A^*$ and $B \subseteq B^*$. Thus A is *-dense in itself and B is *-dense in itself and by Theorem 2.15, A and B are strongly g-*-closed.

The following Theorem gives a characterization of strongly \mathcal{I}_{g} - \star -open sets.

Theorem 2.26. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is strongly \mathcal{I}_g -*-open if and only if $F \subseteq int^*(A)$ whenever F is *-g-closed and $F \subseteq A$.

Proof. Suppose A is strongly \mathcal{I}_g -*-open. If F is *-g-closed and F \subseteq A, then X-A \subseteq X-F and so cl*(X-A) \subseteq X-F by Theorem 2.5(2). Therefore F \subseteq X-cl*(X-A)=int*(A). Hence F \subseteq int*(A).

Conversely, suppose the condition holds. Let U be an \star -g-open set such that $X-A \subseteq U$. Then $X-U \subseteq A$ and so $X-U \subseteq int^*(A)$. Therefore $cl^*(X-A) \subseteq U$. By Theorem 2.5(2), X-A is strongly \mathcal{I}_g - \star -closed. Hence A is strongly \mathcal{I}_g - \star -open.

Corollary 2.27. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If A is strongly \mathcal{I}_g - \star -open, then $F \subseteq int^*(A)$ whenever F is closed and $F \subseteq A$.

The following Theorem gives a property of strongly \mathcal{I}_{g} - \star -closed.

Theorem 2.28. Let (X, τ, \mathcal{I}) be an ideal topological space and $A, B \subseteq X$. If A is strongly \mathcal{I}_g -*-open and $int^*(A) \subseteq B \subseteq A$, then B is strongly \mathcal{I}_g -*-open.

Proof. Since $\operatorname{int}^*(A) \subseteq B \subseteq A$, we have $X - A \subseteq X - B \subseteq X - \operatorname{int}^*(A) = \operatorname{cl}^*(X - A)$. By assumption A is strongly \mathcal{I}_g -*-open and so X - A is strongly \mathcal{I}_g -*-closed. Hence by Theorem 2.24, X - B is strongly \mathcal{I}_g -*-closed and B is strongly \mathcal{I}_g -*-closed. \Box

The following Theorem gives a characterization of strongly \mathcal{I}_g -*-closed sets in terms of strongly \mathcal{I}_g -*-open sets.

Theorem 2.29. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then the following are equivalent.

- (1). A is strongly \mathcal{I}_g - \star -closed,
- (2). $A \cup (X A^*)$ is strongly \mathcal{I}_g -*-closed,
- (3). $A^* A$ is strongly \mathcal{I}_g -*-open.

Proof. (1) ⇒ (2). Suppose A is strongly \mathcal{I}_{g} -*-closed. If U is any *-g-open set such that $(A \cup (X-A^*)) \subseteq U$, then $X-U \subseteq X-(A \cup (X-A^*)) = [A \cup (A^*)^c]^c = A^* \cap A^c = A^* - A$. Since A is strongly \mathcal{I}_{g} -*-closed, by Theorem 2.5(4), it follows that $X-U=\phi$ and so X=U. Since X is the only *-g-open set containing $A \cup (X-A^*)$, clearly, $A \cup (X-A^*)$ is strongly \mathcal{I}_{g} -*-closed. (2) ⇒ (1). Suppose $A \cup (X-A^*)$ is strongly \mathcal{I}_{g} -*-closed. If F is any *-g-closed set such that $F \subseteq A^* - A = X - (A \cup (X-A^*))$, then $A \cup (X-A^*) \subseteq X - F$ and X-F is *-g-open. Therefore, $(A \cup (X-A^*))^* \subseteq X - F$ which implies that $A^* \cup (X-A^*)^* \subseteq X - F$ and so $F \subseteq X - A^*$. Since $F \subseteq A^*$, it follows that $F = \phi$. Hence A is strongly \mathcal{I}_{g} -*-closed.

Theorem 2.30. Let (X, τ, \mathcal{I}) be an ideal topological space. Then every subset of X is strongly \mathcal{I}_g - \star -closed if and only if every \star -g-open set is \star -closed.

Proof. Suppose every subset of X is strongly \mathcal{I}_g -*-closed. Let U be any *-g-open in X. Then U \subseteq U and U is strongly \mathcal{I}_g -*-closed by assumption implies U* \subseteq U. Hence U is *-closed.

Conversely, let $A \subseteq X$ and U be any \star -g-open such that $A \subseteq U$. Since U is \star -closed by assumption, we have $A^* \subseteq U^* \subseteq U$. Thus A is strongly \mathcal{I}_{g} - \star -closed.

The following Theorem gives a characterization of normal spaces in terms of strongly \mathcal{I}_g -*-open sets.

Theorem 2.31. Let (X, τ, \mathcal{I}) be an ideal topological space where \mathcal{I} is completely codense. Then the following are equivalent.

(1). X is normal,

(2). For any disjoint closed sets A and B, there exist disjoint strongly $\mathcal{I}_{g} \twoheadrightarrow \text{open sets } U$ and V such that $A \subseteq U$ and $B \subseteq V$,

(3). For any closed set A and open set V containing A, there exists a strongly $\mathcal{I}_g \twoheadrightarrow$ -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.

Proof. (1) \Rightarrow (2) The proof follows from the fact that every open set is strongly \mathcal{I}_{g} - \star -open.

 $(2)\Rightarrow(3)$ Suppose A is closed and V is an open set containing A. Since A and X–V are disjoint closed sets, there exist disjoint strongly \mathcal{I}_{g} - \star -open sets U and W such that A \subseteq U and X–V \subseteq W. Since X–V is \star -g-closed and W is strongly \mathcal{I}_{g} - \star -open, X–V \subseteq int^{*}(W). Then X–int^{*}(W) \subseteq V. Again U \cap W= ϕ which implies that U \cap int^{*}(W)= ϕ and so U \subseteq X–int^{*}(W). Then cl^{*}(U) \subseteq X–int^{*}(W) \subseteq V and thus U is the required strongly \mathcal{I}_{g} - \star -open set with A \subseteq U \subseteq cl^{*}(U) \subseteq V.

 $(3)\Rightarrow(1)$ Let A and B be two disjoint closed subsets of X. Then A is a closed set and X – B an open set containing A. By hypothesis, there exists a strongly \mathcal{I}_{g} -*-open set U such that $A\subseteq U\subseteq cl^{*}(U)\subseteq X-B$. Since U is strongly \mathcal{I}_{g} -*-open and A is *-g-closed we have $A\subseteq int^{*}(U)$. Since \mathcal{I} is completely codense, by Lemma 1.11, $\tau^{*}\subseteq\tau^{\alpha}$ and so $int^{*}(U)$ and $X-cl^{*}(U)\in\tau^{\alpha}$. Hence $A\subseteq int^{*}(U)\subseteq int(cl(int(int^{*}(U))))=G$ and $B\subseteq X-cl^{*}(U)\subseteq int(cl(int(X-cl^{*}(U))))=H$. G and H are the required disjoint open sets containing A and B respectively, which proves (1).

Definition 2.32. A subset H of an ideal topological space (X, τ, \mathcal{I}) is said to be an \star -g α -closed set if α -cl(H) $\subseteq U$ whenever $H \subseteq U$ and U is \star -g-open.

The complement of an \star -g α -closed set is said to be an \star -g α -open set.

If $\mathcal{I}=\mathcal{N}$, it is not difficult to see that strongly \mathcal{I}_{g} -*-closed sets coincide with *- $g\alpha$ -closed sets and so we have the following Corollary.

Corollary 2.33. Let (X, τ, \mathcal{I}) be an ideal topological space where $\mathcal{I}=\mathcal{N}$. Then the following are equivalent.

(1). X is normal,

(2). For any disjoint closed sets A and B, there exist disjoint \star -g α -open sets U and V such that $A \subseteq U$ and $B \subseteq V$,

(3). For any closed set A and open set V containing A, there exists an \star -g α -open set U such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V$.

Definition 2.34. A subset H of an ideal topological space is said to be \mathcal{I} -compact [4] or compact modulo \mathcal{I} [16] if for every open cover $\{U_{\alpha} \mid \alpha \in \Delta\}$ of H, there exists a finite subset Δ_0 of Δ such that $H - \cup \{U_{\alpha} \mid \alpha \in \Delta_0\} \in \mathcal{I}$. The space (X, τ, \mathcal{I}) is \mathcal{I} -compact if X is \mathcal{I} -compact as a subset.

Theorem 2.35 ([15]). Let (X, τ, \mathcal{I}) be an ideal topological space. If A is an \mathcal{I}_g -closed subset of X, then A is \mathcal{I} -compact. **Corollary 2.36.** Let (X, τ, \mathcal{I}) be an ideal topological space. If A is a strongly \mathcal{I}_g -*-closed subset of X, then A is \mathcal{I} -compact. *Proof.* The proof follows from the fact that every strongly \mathcal{I}_g -*-closed is \mathcal{I}_g -closed.

3. \star -g- \mathcal{I} -locally Closed Sets

Definition 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called a \star -g- \mathcal{I} -locally closed set (briefly, \star -g- \mathcal{I} -LC) if $A = U \cap V$ where U is \star -g-open and V is \star -closed.

Definition 3.2 ([8]). A subset A of an ideal topological space (X, τ, \mathcal{I}) is called a weakly \mathcal{I} -locally closed set (briefly, weakly \mathcal{I} -LC) if $A = U \cap V$ where U is open and V is \star -closed.

Proposition 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space and A a subset of X. Then the following hold.

- (1). If A is \star -g-open, then A is \star -g- \mathcal{I} -LC-set.
- (2). If A is \star -closed, then A is \star -g- \mathcal{I} -LC-set.
- (3). If A is a weakly \mathcal{I} -LC-set, then A is a \star -g- \mathcal{I} -LC-set.

The converses of Proposition 3.3 need not be true as shown in the following Examples.

Example 3.4.

- (1). In Example 2.7, *-g-I-LC-sets are φ, X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, c}, {a, b, d}. Clearly {c} is a *-g-I-LC-set but it is not a *-closed set.
- (2). In Example 2.7, \star -g-open sets are ϕ , X, {c}, {d}, {a, c}, {c, d}, {a, c, d}. Clearly {a, b} is a \star -g-I-LC-set but it is not a \star -g-open set.

Example 3.5. In Example 2.7, weakly *I*-LC-sets are ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, d}, {a, b, c}, {a, b,

Theorem 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is a \star -g- \mathcal{I} -LC-set and B is a \star -closed set, then $A \cap B$ is a \star -g- \mathcal{I} -LC-set.

Proof. Let B be \star -closed, then $A \cap B = (U \cap V) \cap B = U \cap (V \cap B)$, where $V \cap B$ is \star -closed. Hence $A \cap B$ is a \star -g- \mathcal{I} -LC-set. \Box

Theorem 3.7. A subset of an ideal topological space (X, τ, \mathcal{I}) is \star -closed if and only if it is

- (i). weakly \mathcal{I} -LC and \mathcal{I}_g -closed [6].
- (ii). \star -g- \mathcal{I} -LC and strongly \mathcal{I}_g - \star -closed.

Proof. (ii) Necessity is trivial. We prove only sufficiency. Let A be \star -g- \mathcal{I} -LC-set and strongly \mathcal{I}_g - \star -closed set. Since A is \star -g- \mathcal{I} -LC, A=U∩V, where U is \star -g-open and V is \star -closed. So, we have A=U∩V⊆U. Since A is strongly \mathcal{I}_g - \star -closed, A^{*} ⊆ U. Also since A = U∩V⊆V and V is \star -closed, we have A^{*} ⊆ V. Consequently, A^{*} ⊆U∩V = A and hence A is \star -closed. \Box

Remark 3.8.

- (1). The notions of weakly \mathcal{I} -LC-set and \mathcal{I}_g -closed set are independent [6].
- (2). The notions of \star -g- \mathcal{I} -LC-set and strongly \mathcal{I}_{g} - \star -closed set are independent.

Example 3.9. In Example 2.7, clearly $\{c\}$ is a \star -g- \mathcal{I} -LC-set but not strongly \mathcal{I}_{g} - \star -closed.

Example 3.10. In Example 2.7, clearly $\{b, c\}$ is strongly \mathcal{I}_q - \star -closed but not a \star -g- \mathcal{I} -LC-set.

4. Decompositions of \star -continuity

Definition 4.1. A function $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is said to be *-continuous [6] (resp. \mathcal{I}_g -continuous [6], *-g- \mathcal{I} -LC-continuous, strongly \mathcal{I}_g -*-continuous, weakly \mathcal{I} -LC-continuous [8]) if $f^{-1}(A)$ is *-closed (resp. \mathcal{I}_g -closed, *-g- \mathcal{I} -LC-set, strongly \mathcal{I}_g -*-closed, weakly \mathcal{I} -LC-set) in (X, τ, \mathcal{I}) for every closed set A of (Y, σ) .

Theorem 4.2. A function $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is \star -continuous if and only if it is (i) weakly \mathcal{I} -LC-continuous and \mathcal{I}_g -continuous [6]. (ii) \star -g- \mathcal{I} -LC-continuous and strongly \mathcal{I}_g - \star -continuous.

Proof. It is an immediate consequence of Theorem 3.7.

References

- [1] V. P. Anuja, R. Premkumar and O. Ravi, Strongly g-*-closed sets, Submitted.
- J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [3] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology and its Applications, 93(1999), 1-16.
- [4] T. R. Hamlett and D. Jankovic, Compactness with respect to an ideal, Boll. U. M. I., (7) 4-B(1990), 849-861.
- [5] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [6] V. Inthumathi, S. Krishnaprakash and M. Rajamani, Strongly-*I*-Locally closed sets and decompositions of *-continuity, Acta Math. Hungar., 130(4)(2011), 358-362.
- [7] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [8] A. Keskin, S. Yuksel and T. Noiri, Decompositions of *I*-continuity and continuity, Commun. Fac. Sci. Univ. Ank. Series A, 53(2004), 67-75.
- [9] K. Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [11] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.
- [12] D. Mandal and M. N. Mukherjee, Certain new classes of generalized closed sets and their applications in ideal topological spaces, Filomat, 29(5)(2015), 1113-1120.
- [13] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [14] K. Meena, M. Rajakalaivanan and O. Ravi, Mildly \mathcal{I}_{g} -*-closed sets, International Journal of Current Research in Science and Technology, 2(12)(2016), 9-17.
- [15] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
- [16] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara (1967).
- [17] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [18] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and Completely codense ideals, Acta Math. Hungar., 108(2005), 197-205.
- [19] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company (1946).