

International Journal of Current Research in Science and Technology

$\mathcal{I}_{q^{\#}} ext{-}\mathbf{Normal} \text{ and } \mathcal{I}_{q^{\#}} ext{-}\mathbf{Regular Spaces}$

Research Article

K.Meena¹, O.Nethaji² and O.Ravi²*

1 Department of Mathematics, Arulmigu Palaniandavar Arts College for Women, Palani, Dindigul District, Tamil Nadu, India.

- 2 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
- Abstract: $\mathcal{I}_{g^{\#}}$ -normal and $\mathcal{I}_{g^{\#}}$ -regular spaces are introduced and various characterizations and properties are given. Characterizations of normal, mildly normal, $g^{\#}$ -normal and regular spaces are also given.

MSC: 54D10, 54D15.

Keywords: $\mathcal{I}_{g^{\#}}$ -closed and $\mathcal{I}_{g^{\#}}$ -open set, completely codense ideal, $g^{\#}$ -closed and $g^{\#}$ -open set, $g^{\#}$ -normal space, mildly normal space, regular space.

© JS Publication.

1. Introduction and Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) . A subset A of a space (X, τ) is said to be regular open [17] if A=int(cl(A)) and A is said to be regular closed [17] if A=cl(int(A)). A subset A of a space (X, τ) is said to be an α -open [12] (resp. preopen [9]) if $A\subseteq int(cl(int(A)))$ (resp. $A\subseteq int(cl(A))$).

The complement of α -open set is α -closed [10]. The α -closure [10] of a subset A of X, denoted by $\alpha cl(A)$, is defined to be the intersection of all α -closed sets containing A. The α -interior [10] of a subset A of X, denoted by $\alpha int(A)$, is defined to be the union of all α -open sets contained in A. The family of all α -open sets in (X, τ) , denoted by τ^{α} , is a topology on X finer than τ . The interior of a subset A in (X, τ^{α}) is denoted by $int_{\alpha}(A)$. The closure of a subset A in (X, τ^{α}) is denoted by $cl_{\alpha}(A)$. A subset A of a space (X, τ) is said to be αg -closed [8] if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

The complement of αg -closed set is αg -open. A subset A of a space (X, τ) is said to be $g^{\#}$ -closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open. The complement of $g^{\#}$ -closed set is $g^{\#}$ -open. A subset A of a space (X, τ) is said to be $\alpha g^{\#}$ -closed [5] (resp. $r\alpha g$ -closed [13]) if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open (resp. regular open). A is said to be $\alpha g^{\#}$ -open (resp. $r\alpha g$ -open) if X-A is $\alpha g^{\#}$ -closed (resp. $r\alpha g$ -closed). A subset A of a space (X, τ) is said to be g-closed [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. A space (X, τ) is said to be $g^{\#}$ -open (resp. $r\alpha g$ -open) if X-A is $\alpha g^{\#}$ -closed (resp. $r\alpha g$ -closed). A subset A of a space (X, τ) is said to be g-closed [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. A space (X, τ) is said to be $g^{\#}$ -normal [5], if for every disjoint $g^{\#}$ -closed sets A and B, there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

 $^{^{*}}$ E-mail: siingam@yahoo.com

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$ [6]. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [6] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$.

We will make use of the basic facts about the local functions [[4], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I}, \tau)$, called the *-topology, finer than τ is defined by $cl^*(A)=A\cup A^*(\mathcal{I}, \tau)$ [18]. When there is no chance for confusion, we will simply write A* for $A^*(\mathcal{I}, \tau)$ and τ^* for $\tau^*(\mathcal{I}, \tau)$. int^{*}(A) will denote the interior of A in (X, τ^*). If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ).

A subset A of an ideal topological space (X, τ, \mathcal{I}) is τ^* -closed [4] or \star -closed (resp. \star -dense in itself [3]) if $A^* \subseteq A$ (resp. $A \subseteq A^*$). A subset A of an ideal topological space (X, τ, \mathcal{I}) is $\mathcal{I}_{g^{\#}}$ -closed [5] if $A^* \subseteq U$ whenever U is αg -open and $A \subseteq U$. By Theorem 2.5 of [5], every \star -closed and hence every closed set is $\mathcal{I}_{g^{\#}}$ -closed. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be $\mathcal{I}_{g^{\#}}$ -open [5] if X-A is $\mathcal{I}_{g^{\#}}$ -closed.

In this paper, we define $\mathcal{I}_{g^{\#}}$ -normal, $_{g^{\#}}\mathcal{I}$ -normal and $\mathcal{I}_{g^{\#}}$ -regular spaces using $\mathcal{I}_{g^{\#}}$ -open sets and give characterizations and properties of such spaces. Also, characterizations of normal, mildly normal, $g^{\#}$ -normal and regular spaces are given.

An ideal \mathcal{I} is said to be codense [2] if $\tau \cap \mathcal{I} = \{\phi\}$. \mathcal{I} is said to be completely codense [15] if $PO(X) \cap \mathcal{I} = \{\phi\}$, where PO(X) is the family of all preopen sets in (X, τ) . Every completely codense ideal is codense but not conversely [15]. The following lemmas and proposition will be useful in the sequel.

Lemma 1.1 ([15], Theorem 6). Let (X, τ, \mathcal{I}) be an ideal topological space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$.

Lemma 1.2 ([5], Theorem 2.26). Let (X, τ, \mathcal{I}) be an ideal topological space where \mathcal{I} is completely codense. Then the following are equivalent.

- (1). X is normal.
- (2). For any disjoint closed sets A and B, there exist disjoint $\mathcal{I}_{g^{\#}}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (3). For any closed set A and open set V containing A, there exists an $\mathcal{I}_{q^{\#}}$ -open set U such that $A \subseteq U \subseteq cl^{\star}(U) \subseteq V$.

Lemma 1.3 ([5]). If (X, τ, \mathcal{I}) is an ideal topological space and $A \subseteq X$, then the following hold.

(1). If $\mathcal{I} = \{\phi\}$, then A is $\mathcal{I}_{a^{\#}}$ -closed if and only if A is $g^{\#}$ -closed.

(2). If $\mathcal{I}=\mathcal{N}$, then A is $\mathcal{I}_{q^{\#}}$ -closed if and only if A is $\alpha g^{\#}$ -closed.

Lemma 1.4 ([5], Theorem 2.4). If (X, τ, \mathcal{I}) is an ideal topological space and $A \subseteq X$, then the following are equivalent.

- (1). A is $\mathcal{I}_{q^{\#}}$ -closed.
- (2). $cl^{\star}(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in X.

Lemma 1.5 ([5], Theorem 2.25). Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then A is $\mathcal{I}_{g^{\#}}$ -open if and only if $F \subseteq int^{\star}(A)$ whenever F is αg -closed and $F \subseteq A$.

Lemma 1.6 ([5], Theorem 2.24). Let (X, τ, \mathcal{I}) be an ideal topological space. Then every subset of X is $\mathcal{I}_{g^{\#}}$ -closed if and only if every αg -open set is \star -closed.

Proposition 1.7 ([8]). In a space X, the following hold:

(1). Every open set is αg -open but not conversely.

(2). Every $\alpha g^{\#}$ -open set is αg -open but not conversely.

2. $\mathcal{I}_{g^{\#}}$ -normal and ${}_{g^{\#}}\mathcal{I}$ -normal spaces

An ideal topological space (X, τ, \mathcal{I}) is said to be an $\mathcal{I}_{g^{\#}}$ -normal space if for every pair of disjoint closed sets A and B, there exist disjoint $\mathcal{I}_{g^{\#}}$ -open sets U and V such that A \subseteq U and B \subseteq V. Since every open set is an $\mathcal{I}_{g^{\#}}$ -open set, every normal space is $\mathcal{I}_{g^{\#}}$ -normal. The following Example 2.1 shows that an $\mathcal{I}_{g^{\#}}$ -normal space is not necessarily a normal space. Theorem 2.2 below gives characterizations of $\mathcal{I}_{g^{\#}}$ -normal spaces. Theorem 2.3 below shows that the two concepts coincide for completely codense ideal topological spaces.

Example 2.1. Let $X = \{a, b, c\}, \tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\phi, \{b\}\}$. Then $\phi^* = \phi, (\{a, b\})^* = \{a\}, (\{b, c\})^* = \{c\}, (\{b\})^* = \phi$ and $X^* = \{a, c\}$. Here every αg -open set is \star -closed and so, by Lemma 1.6, every subset of X is $\mathcal{I}_{g^{\#}}$ -closed and hence every subset of X is $\mathcal{I}_{g^{\#}}$ -open. This implies that (X, τ, \mathcal{I}) is $\mathcal{I}_{g^{\#}}$ -normal. Now $\{a\}$ and $\{c\}$ are disjoint closed subsets of X which are not separated by disjoint open sets and so (X, τ) is not normal.

Theorem 2.2. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following are equivalent.

(1). X is $\mathcal{I}_{g^{\#}}$ -normal.

(2). For every closed set A and an open set V containing A, there exists an $\mathcal{I}_{q^{\#}}$ -open set U such that $A \subseteq U \subseteq cl^{\star}(U) \subseteq V$.

Proof.

 $(1)\Rightarrow(2)$. Let A be a closed set and V be an open set containing A. Since A and X-V are disjoint closed sets, there exist disjoint $\mathcal{I}_{g^{\#}}$ -open sets U and W such that A \subseteq U and X-V \subseteq W. Again, U \cap W= ϕ implies that U \cap int^{*}(W)= ϕ and so cl^{*}(U) \subseteq X-int^{*}(W). Since X-V is αg -closed and W is $\mathcal{I}_{g^{\#}}$ -open, X-V \subseteq W implies that X-V \subseteq int^{*}(W) and so X-int^{*}(W) \subseteq V. Thus, we have A \subseteq U \subseteq cl^{*}(U) \subseteq X-int^{*}(W) \subseteq V which proves (2).

(2) \Rightarrow (1). Let A and B be two disjoint closed subsets of X. By hypothesis, there exists an $\mathcal{I}_{g^{\#}}$ -open set U such that $A \subseteq U \subseteq cl^{*}(U) \subseteq X-B$. If $W=X-cl^{*}(U)$, then U and W are the required disjoint $\mathcal{I}_{g^{\#}}$ -open sets containing A and B respectively. So, (X, τ , \mathcal{I}) is $\mathcal{I}_{g^{\#}}$ -normal.

Theorem 2.3. Let (X, τ, \mathcal{I}) be an ideal topological space where \mathcal{I} is completely codense. If (X, τ, \mathcal{I}) is $\mathcal{I}_{g^{\#}}$ -normal, then it is a normal space.

Proof. It is obvious from Theorem 2.2 and Lemma 1.2.

Theorem 2.4. Let (X, τ, \mathcal{I}) be an $\mathcal{I}_{g^{\#}}$ -normal space. If F is closed and A is a $g^{\#}$ -closed set such that $A \cap F = \phi$, then there exist disjoint $\mathcal{I}_{g^{\#}}$ -open sets U and V such that $A \subseteq U$ and $F \subseteq V$.

Proof. Since $A \cap F = \phi$, $A \subseteq X - F$ where X - F is αg -open. Therefore, by hypothesis, $cl(A) \subseteq X - F$. Since $cl(A) \cap F = \phi$ and X is $\mathcal{I}_{g^{\#}}$ -normal, there exist disjoint $\mathcal{I}_{g^{\#}}$ -open sets U and V such that $cl(A) \subseteq U$ and $F \subseteq V$. Thus $A \subseteq U$ and $F \subseteq V$.

The following Corollaries 2.5 and 2.6 give properties of normal spaces. If $\mathcal{I}=\{\phi\}$ in Theorem 2.4, then we have the following Corollary 2.5, the proof of which follows from Theorem 2.3 and Lemma 1.3, since $\{\phi\}$ is a completely codense ideal. If $\mathcal{I}=\mathcal{N}$ in Theorem 2.4, then we have the Corollary 2.6 below, since $\tau^*(\mathcal{N})=\tau^{\alpha}$ and $\mathcal{I}_{q^{\#}}$ -open sets coincide with $\alpha g^{\#}$ -open sets.

Corollary 2.5. Let (X, τ) be a normal space with $\mathcal{I} = \{\phi\}$. If F is a closed set and A is a $g^{\#}$ -closed set disjoint from F, then there exist disjoint $g^{\#}$ -open sets U and V such that $A \subseteq U$ and $F \subseteq V$.

Corollary 2.6. Let (X, τ, \mathcal{I}) be a normal ideal topological space where $\mathcal{I}=\mathcal{N}$. If F is a closed set and A is a $g^{\#}$ -closed set disjoint from F, then there exist disjoint $\alpha g^{\#}$ -open sets U and V such that $A \subseteq U$ and $F \subseteq V$.

Theorem 2.7. Let (X, τ, \mathcal{I}) be an ideal topological space which is $\mathcal{I}_{q^{\#}}$ -normal. Then the following hold.

(1). For every closed set A and every $g^{\#}$ -open set B containing A, there exists an $\mathcal{I}_{a^{\#}}$ -open set U such that $A \subseteq int^{*}(U) \subseteq U \subseteq B$.

(2). For every $g^{\#}$ -closed set A and every open set B containing A, there exists an $\mathcal{I}_{a^{\#}}$ -closed set U such that $A \subseteq U \subseteq cl^{*}(U) \subseteq B$.

Proof.

- (1). Let A be a closed set and B be a $g^{\#}$ -open set containing A. Then $A \cap (X-B) = \phi$, where A is closed and X-B is $g^{\#}$ -closed. By Theorem 2.4, there exist disjoint $\mathcal{I}_{g^{\#}}$ -open sets U and V such that $A \subseteq U$ and $X-B \subseteq V$. Since $U \cap V = \phi$, we have $U \subseteq X-V$. By Lemma 1.5, $A \subseteq int^{*}(U)$. Therefore, $A \subseteq int^{*}(U) \subseteq U \subseteq X-V \subseteq B$. This proves (1).
- (2). Let A be a $g^{\#}$ -closed set and B be an open set containing A. Then X–B is a closed set contained in the $g^{\#}$ -open set X–A. By (1), there exists an $\mathcal{I}_{g^{\#}}$ -open set V such that X–B⊆int*(V)⊆V⊆X–A. Therefore, A⊆X–V⊆cl*(X–V)⊆B. If U=X–V, then A⊆U⊆cl*(U)⊆B and so U is the required $\mathcal{I}_{g^{\#}}$ -closed set.

The following Corollaries 2.8 and 2.9 give some properties of normal spaces. If $\mathcal{I}=\{\phi\}$ in Theorem 2.7, then we have the following Corollary 2.8. If $\mathcal{I}=\mathcal{N}$ in Theorem 2.7, then we have the Corollary 2.9 below.

Corollary 2.8. Let (X, τ) be a normal space with $\mathcal{I} = \{\phi\}$. Then the following hold.

(1). For every closed set A and every $g^{\#}$ -open set B containing A, there exists a $g^{\#}$ -open set U such that $A \subseteq int(U) \subseteq U \subseteq B$.

(2). For every $g^{\#}$ -closed set A and every open set B containing A, there exists a $g^{\#}$ -closed set U such that $A \subseteq U \subseteq cl(U) \subseteq B$.

Corollary 2.9. Let (X, τ) be a normal space with $\mathcal{I} = \mathcal{N}$. Then the following hold.

- (1). For every closed set A and every $g^{\#}$ -open set B containing A, there exists an $\alpha g^{\#}$ -open set U such that $A \subseteq int_{\alpha}(U) \subseteq U \subseteq B$.
- (2). For every $g^{\#}$ -closed set A and every open set B containing A, there exists an $\alpha g^{\#}$ -closed set U such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq B$.

An ideal topological space (X, τ, \mathcal{I}) is said to be $_{g^{\#}}\mathcal{I}$ -normal if for each pair of disjoint $\mathcal{I}_{g^{\#}}$ -closed sets A and B, there exist disjoint open sets U and V in X such that A \subseteq U and B \subseteq V. Since every closed set is $\mathcal{I}_{g^{\#}}$ -closed, every $_{g^{\#}}\mathcal{I}$ -normal space is normal. But a normal space need not be $_{g^{\#}}\mathcal{I}$ -normal as the following Example 2.10 shows. Theorems 2.11 and 2.13 below give characterizations of $_{g^{\#}}\mathcal{I}$ -normal spaces.

Example 2.10. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Every αg -open set is \star -closed and so every subset of X is $\mathcal{I}_{g^{\#}}$ -closed. Now $A = \{a, b\}$ and $B = \{c\}$ are disjoint $\mathcal{I}_{g^{\#}}$ -closed sets, but they are not separated by disjoint open sets. So (X, τ, \mathcal{I}) is not $_{g^{\#}}\mathcal{I}$ -normal. But (X, τ, \mathcal{I}) is normal.

Theorem 2.11. In an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- (1). X is $_{a^{\#}}\mathcal{I}$ -normal.
- (2). For every $\mathcal{I}_{g^{\#}}$ -closed set A and every $\mathcal{I}_{g^{\#}}$ -open set B containing A, there exists an open set U of X such that $A \subseteq U \subseteq cl(U) \subseteq B$.

Proof. It is similar to the proof of Theorem 2.2.

If $\mathcal{I}=\{\phi\}$, then $_{g^{\#}}\mathcal{I}$ -normal spaces coincide with $g^{\#}$ -normal spaces and so if we take $\mathcal{I}=\{\phi\}$, in Theorem 2.11, then we have the following characterization for $g^{\#}$ -normal spaces.

Corollary 2.12. In a space (X, τ) , the following are equivalent.

- (1). X is $g^{\#}$ -normal.
- (2). For every $g^{\#}$ -closed set A and every $g^{\#}$ -open set B containing A, there exists an open set U of X such that $A \subseteq U \subseteq cl(U) \subseteq B$.

Theorem 2.13. In an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- (1). X is $_{q^{\#}}\mathcal{I}$ -normal.
- (2). For each pair of disjoint $\mathcal{I}_{g^{\#}}$ -closed subsets A and B of X, there exists an open set U of X containing A such that $cl(U) \cap B = \phi$.
- (3). For each pair of disjoint $\mathcal{I}_{g^{\#}}$ -closed subsets A and B of X, there exist an open set U containing A and an open set V containing B such that $cl(U) \cap cl(V) = \phi$.

Proof.

(1) \Rightarrow (2). Suppose that A and B are disjoint $\mathcal{I}_{g^{\#}}$ -closed subsets of X. Then the $\mathcal{I}_{g^{\#}}$ -closed set A is contained in the $\mathcal{I}_{g^{\#}}$ -open set X-B. By Theorem 2.11, there exists an open set U such that $A \subseteq U \subseteq cl(U) \subseteq X-B$. Therefore, U is the required open set containing A such that $cl(U) \cap B = \phi$.

 $(2)\Rightarrow(3)$. Let A and B be two disjoint $\mathcal{I}_{g^{\#}}$ -closed subsets of X. By hypothesis, there exists an open set U of X containing A such that $cl(U)\cap B=\phi$. Also, cl(U) and B are disjoint $\mathcal{I}_{g^{\#}}$ -closed sets of X. By hypothesis, there exists an open set V of X containing B such that $cl(U)\cap cl(V)=\phi$.

 $(3) \Rightarrow (1)$. The proof is clear.

If $\mathcal{I}=\{\phi\}$, in Theorem 2.13, then we have the following characterizations for $g^{\#}$ -normal spaces.

Corollary 2.14. Let (X, τ) be a space. Then the following are equivalent.

(1). X is $g^{\#}$ -normal.

- (2). For each pair of disjoint $g^{\#}$ -closed subsets A and B of X, there exists an open set U of X containing A such that $cl(U) \cap B = \phi$.
- (3). For each pair of disjoint $g^{\#}$ -closed subsets A and B of X, there exist an open set U containing A and an open set V containing B such that $cl(U) \cap cl(V) = \phi$.

Theorem 2.15. Let (X, τ, \mathcal{I}) be an $_{g^{\#}}\mathcal{I}$ -normal space. If A and B are disjoint $\mathcal{I}_{g^{\#}}$ -closed subsets of X, then there exist disjoint open sets U and V such that $cl^*(A) \subseteq U$ and $cl^*(B) \subseteq V$.

Proof. Suppose that A and B are disjoint $\mathcal{I}_{g^{\#}}$ -closed sets. By Theorem 2.13(3), there exist an open set U containing A and an open set V containing B such that $cl(U)\cap cl(V)=\phi$. Since A is $\mathcal{I}_{g^{\#}}$ -closed, A \subseteq U implies that $cl^{*}(A)\subseteq$ U. Similarly $cl^{*}(B)\subseteq$ V.

If $\mathcal{I}=\{\phi\}$, in Theorem 2.15, then we have the following property of disjoint $g^{\#}$ -closed sets in $g^{\#}$ -normal spaces.

Corollary 2.16. Let (X, τ) be a $g^{\#}$ -normal space. If A and B are disjoint $g^{\#}$ -closed subsets of X, then there exist disjoint open sets U and V such that $cl(A) \subseteq U$ and $cl(B) \subseteq V$.

Theorem 2.17. Let (X, τ, \mathcal{I}) be an $_{g^{\#}}\mathcal{I}$ -normal space. If A is an $\mathcal{I}_{g^{\#}}$ -closed set and B is an $\mathcal{I}_{g^{\#}}$ -open set containing A, then there exists an open set U such that $A \subseteq cl^*(A) \subseteq U \subseteq int^*(B) \subseteq B$.

Proof. Suppose A is an $\mathcal{I}_{g^{\#}}$ -closed set and B is an $\mathcal{I}_{g^{\#}}$ -open set containing A. Since A and X−B are disjoint $\mathcal{I}_{g^{\#}}$ -closed sets, by Theorem 2.15, there exist disjoint open sets U and V such that $cl^{*}(A)\subseteq U$ and $cl^{*}(X-B)\subseteq V$. Now, X-int^{*}(B)= $cl^{*}(X-B)\subseteq V$ implies that X-V⊆int^{*}(B). Again, U∩V= ϕ implies U⊆X-V and so A⊆ $cl^{*}(A)\subseteq U\subseteq X-V\subseteq$ int^{*}(B)⊆B.

If $\mathcal{I}=\{\phi\}$, in Theorem 2.17, then we have the following Corollary 2.18.

Corollary 2.18. Let (X, τ) be a $g^{\#}$ -normal space. If A is a $g^{\#}$ -closed set and B is a $g^{\#}$ -open set containing A, then there exists an open set U such that $A \subseteq cl(A) \subseteq U \subseteq int(B) \subseteq B$.

The following Theorem 2.19 gives a characterization of normal spaces in terms of $g^{\#}$ -open sets which follows from Lemma 1.2 if $\mathcal{I} = \{\phi\}$.

Theorem 2.19. Let (X, τ) be a space. Then the following are equivalent.

- (1). X is normal.
- (2). For any disjoint closed sets A and B, there exist disjoint $g^{\#}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (3). For any closed set A and open set V containing A, there exists a $g^{\#}$ -open set U such that $A \subseteq U \subseteq cl(U) \subseteq V$.

The rest of the section is devoted to the study of mildly normal spaces in terms of $\mathcal{I}_{g^{\#}}$ -open sets, \mathcal{I}_{g} -open sets and \mathcal{I}_{rg} -open sets. A space (X, τ) is said to be a mildly normal space [16] if disjoint regular closed sets are separated by disjoint open sets. A subset A of a space (X, τ) is said to be rg-closed [14] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is regular open in X. The complement of rg-closed set is called rg-open.

A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I}_g -closed [1] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be a regular generalized closed set with respect to an ideal \mathcal{I}

 $(\mathcal{I}_{rg}\text{-closed})$ [11] if A* \subseteq U whenever A \subseteq U and U is regular open. A is called \mathcal{I}_{g} -open (resp. \mathcal{I}_{rg} -open) if X-A is \mathcal{I}_{g} -closed (resp. $\mathcal{I}_{rg}\text{-closed}$).

Clearly, every $\mathcal{I}_{g^{\#}}$ -closed set is \mathcal{I}_{g} -closed and every \mathcal{I}_{g} -closed set is \mathcal{I}_{rg} -closed but the separate converses are not true. Theorem 2.21 below gives characterizations of mildly normal spaces. Corollary 2.22 below gives characterizations of mildly normal spaces in terms of $\alpha g^{\#}$ -open, α g-open and r α g-open sets. Corollary 2.23 below gives characterizations of mildly normal spaces in terms of $g^{\#}$ -open, g-open and r α g-open sets. The following Lemma 2.20 is essential to prove Theorem 2.21.

Lemma 2.20 ([11]). Let (X, τ, \mathcal{I}) be an ideal topological space. A subset $A \subseteq X$ is \mathcal{I}_{rg} -open if and only if $F \subseteq int^*(A)$ whenever F is regular closed and $F \subseteq A$.

Theorem 2.21. Let (X, τ, \mathcal{I}) be an ideal topological space where \mathcal{I} is completely codense. Then the following are equivalent.

- (1). X is mildly normal.
- (2). For disjoint regular closed sets A and B, there exist disjoint $\mathcal{I}_{a^{\#}}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (3). For disjoint regular closed sets A and B, there exist disjoint \mathcal{I}_g -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (4). For disjoint regular closed sets A and B, there exist disjoint \mathcal{I}_{rg} -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (5). For a regular closed set A and a regular open set V containing A, there exists an \mathcal{I}_{rg} -open set U of X such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.
- (6). For a regular closed set A and a regular open set V containing A, there exists an \star -open set U of X such that $A \subseteq U \subseteq cl^{\star}(U) \subseteq V.$
- (7). For disjoint regular closed sets A and B, there exist disjoint \star -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Proof.

 $(1)\Rightarrow(2)$. Suppose that A and B are disjoint regular closed sets. Since X is mildly normal, there exist disjoint open sets U and V such that A \subseteq U and B \subseteq V. But every open set is an $\mathcal{I}_{q^{\#}}$ -open set. This proves (2).

 $(2) \Rightarrow (3)$. The proof follows from the fact that every $\mathcal{I}_{q^{\#}}$ -open set is an \mathcal{I}_{q} -open set.

(3) \Rightarrow (4). The proof follows from the fact that every \mathcal{I}_{g} -open set is an \mathcal{I}_{rg} -open set.

 $(4)\Rightarrow(5)$. Suppose A is a regular closed and B is a regular open set containing A. Then A and X-B are disjoint regular closed sets. By hypothesis, there exist disjoint \mathcal{I}_{rg} -open sets U and V such that A \subseteq U and X-B \subseteq V. Since X-B is regular closed and V is \mathcal{I}_{rg} -open, by Lemma 2.20, X-B \subseteq int^{*}(V) and so X-int^{*}(V) \subseteq B. Again, U \cap V= ϕ implies that U \cap int^{*}(V)= ϕ and so cl^{*}(U) \subseteq X-int^{*}(V) \subseteq B. Hence U is the required \mathcal{I}_{rg} -open set such that A \subseteq U \subseteq cl^{*}(U) \subseteq B.

 $(5)\Rightarrow(6)$. Let A be a regular closed set and V be a regular open set containing A. Then there exists an \mathcal{I}_{rg} -open set G of X such that $A\subseteq G\subseteq cl^*(G)\subseteq V$. By Lemma 2.20, $A\subseteq int^*(G)$. If $U=int^*(G)$, then U is an \star -open set and $A\subseteq U\subseteq cl^*(U)\subseteq cl^*(G)\subseteq V$. Therefore, $A\subseteq U\subseteq cl^*(U)\subseteq V$.

 $(6)\Rightarrow(7)$. Let A and B be disjoint regular closed subsets of X. Then X–B is a regular open set containing A. By hypothesis, there exists an \star -open set U of X such that $A\subseteq U\subseteq cl^{\star}(U)\subseteq X-B$. If $V=X-cl^{\star}(U)$, then U and V are disjoint \star -open sets of X such that $A\subseteq U$ and $B\subseteq V$.

 $(7)\Rightarrow(1)$. Let A and B be disjoint regular closed sets of X. Then there exist disjoint \star -open sets U and V such that A \subseteq U and B \subseteq V. Since \mathcal{I} is completely codense, by Lemma 1.1, $\tau^* \subseteq \tau^{\alpha}$ and so U, $V \in \tau^{\alpha}$. Hence A \subseteq U \subseteq int(cl(int(U)))=G and B \subseteq V \subseteq int(cl(int(V)))=H. G and H are the required disjoint open sets containing A and B respectively. This proves (1). \Box

If $\mathcal{I}=\mathcal{N}$, in the above Theorem 2.21, then \mathcal{I}_{rg} -closed sets coincide with rag-closed sets and so we have the following Corollary 2.22.

Corollary 2.22. Let (X, τ) be a space. Then the following are equivalent.

- (1). X is mildly normal.
- (2). For disjoint regular closed sets A and B, there exist disjoint $\alpha g^{\#}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (3). For disjoint regular closed sets A and B, there exist disjoint αg -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (4). For disjoint regular closed sets A and B, there exist disjoint $r\alpha g$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (5). For a regular closed set A and a regular open set V containing A, there exists an $r\alpha g$ -open set U of X such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V$.
- (6). For a regular closed set A and a regular open set V containing A, there exists an α -open set U of X such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V.$
- (7). For disjoint regular closed sets A and B, there exist disjoint α -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- If $\mathcal{I} = \{\phi\}$ in the above Theorem 2.21, we get the following Corollary 2.23.

Corollary 2.23. Let (X, τ) be a space. Then the following are equivalent.

- (1). X is mildly normal.
- (2). For disjoint regular closed sets A and B, there exist disjoint $g^{\#}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (3). For disjoint regular closed sets A and B, there exist disjoint g-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (4). For disjoint regular closed sets A and B, there exist disjoint rg-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (5). For a regular closed set A and a regular open set V containing A, there exists an rg-open set U of X such that $A \subseteq U \subseteq cl(U) \subseteq V.$
- (6). For a regular closed set A and a regular open set V containing A, there exists an open set U of X such that $A \subseteq U \subseteq cl(U) \subseteq V$.
- (7). For disjoint regular closed sets A and B, there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

3. $\mathcal{I}_{q^{\#}}$ -regular Spaces

An ideal topological space (X, τ, \mathcal{I}) is said to be an $\mathcal{I}_{g^{\#}}$ -regular space if for each pair consisting of a point x and a closed set B not containing x, there exist disjoint $\mathcal{I}_{g^{\#}}$ -open sets U and V such that $x \in U$ and $B \subseteq V$. Every regular space is $\mathcal{I}_{g^{\#}}$ -regular, since every open set is $\mathcal{I}_{g^{\#}}$ -open. The following Example 3.1 shows that an $\mathcal{I}_{g^{\#}}$ -regular space need not be regular. Theorem 3.2 gives a characterization of $\mathcal{I}_{g^{\#}}$ -regular spaces.

Example 3.1. Consider the ideal topological space (X, τ, \mathcal{I}) of Example 2.1. Then $\phi^*=\phi$, $(\{b\})^*=\phi$, $(\{a, b\})^*=\{a\}$, $(\{b, c\})^*=\{c\}$ and $X^*=\{a, c\}$. Since every αg -open set is \star -closed, every subset of X is $\mathcal{I}_{g^{\#}}$ -closed and so every subset of X is $\mathcal{I}_{g^{\#}}$ -closed and so every subset of X is $\mathcal{I}_{g^{\#}}$ -closed and so every subset of X is $\mathcal{I}_{g^{\#}}$ -closed and so every subset of X is $\mathcal{I}_{g^{\#}}$ -closed and so every subset of X is $\mathcal{I}_{g^{\#}}$ -closed by subset of X is $\mathcal{I}_{g^{\#}}$ -closed and so every subset of X is $\mathcal{I}_{g^{\#}}$ -closed by subset of X is $\mathcal{I}_{g^{\#}}$ -closed by disjoint open sets. So (X, τ, \mathcal{I}) is not regular.

Theorem 3.2. In an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

(1). X is $\mathcal{I}_{q^{\#}}$ -regular.

(2). For every open set V containing $x \in X$, there exists an $\mathcal{I}_{q^{\#}}$ -open set U of X such that $x \in U \subseteq cl^{*}(U) \subseteq V$.

Proof.

 $(1)\Rightarrow(2)$. Let V be an open subset such that $x\in V$. Then X-V is a closed set not containing x. Therefore, there exist disjoint $\mathcal{I}_{g^{\#}}$ -open sets U and W such that $x\in U$ and X-V \subseteq W. Now, X-V \subseteq W implies that X-V \subseteq int^{*}(W) and so X-int^{*}(W) \subseteq V. Again, U \cap W= ϕ implies that U \cap int^{*}(W)= ϕ and so cl^{*}(U) \subseteq X-int^{*}(W). Therefore, $x\in U\subseteq$ cl^{*}(U) \subseteq V. This proves (2).

 $(2) \Rightarrow (1)$. Let B be a closed set not containing x. By hypothesis, there exists an $\mathcal{I}_{g^{\#}}$ -open set U such that $x \in U \subseteq cl^{*}(U) \subseteq X-B$. If W=X-cl^{*}(U), then U and W are disjoint $\mathcal{I}_{g^{\#}}$ -open sets such that $x \in U$ and B \subseteq W. This proves (1).

Theorem 3.3. If (X, τ, \mathcal{I}) is an $\mathcal{I}_{q\#}$ -regular, T_1 -space where \mathcal{I} is completely codense, then X is regular.

Proof. Let B be a closed set not containing $x \in X$. By Theorem 3.2, there exists an $\mathcal{I}_{g^{\#}}$ -open set U of X such that $x \in U \subseteq cl^{*}(U) \subseteq X-B$. Since X is a T₁-space, $\{x\}$ is αg -closed and so $\{x\} \subseteq int^{*}(U)$, by Lemma 1.5. Since \mathcal{I} is completely codense, $\tau^{*} \subseteq \tau^{\alpha}$ and so $int^{*}(U)$ and $X-cl^{*}(U)$ are α -open sets. Now, $x \in int^{*}(U) \subseteq int(cl(int(int^{*}(U))))=G$ and $B \subseteq X-cl^{*}(U) \subseteq int(cl(int(X-cl^{*}(U))))=H$. Then G and H are disjoint open sets containing x and B respectively. Therefore, X is regular.

If $\mathcal{I}=\mathcal{N}$ in Theorem 3.2, then we have the following Corollary 3.4 which gives characterizations of regular spaces, the proof of which follows from Theorem 3.3.

Corollary 3.4. If (X, τ) is a T_1 -space, then the following are equivalent.

(1). X is regular.

(2). For every open set V containing $x \in X$, there exists an $\alpha g^{\#}$ -open set U of X such that $x \in U \subseteq cl_{\alpha}(U) \subseteq V$.

If $\mathcal{I} = \{\phi\}$ in Theorem 3.2, then we have the following Corollary 3.5 which gives characterizations of regular spaces, the proof of which follows from Theorem 3.3.

Corollary 3.5. If (X, τ) is a T_1 -space, then the following are equivalent.

(1). X is regular.

(2). For every open set V containing $x \in X$, there exists a $g^{\#}$ -open set U of X such that $x \in U \subseteq cl(U) \subseteq V$.

Theorem 3.6. If every αg -open subset of an ideal topological space (X, τ, \mathcal{I}) is \star -closed, then (X, τ, \mathcal{I}) is $\mathcal{I}_{a^{\#}}$ -regular.

Proof. Suppose every αg -open subset of X is \star -closed. Then by Lemma 1.6, every subset of X is $\mathcal{I}_{g^{\#}}$ -closed and hence every subset of X is $\mathcal{I}_{g^{\#}}$ -open. If B is a closed set not containing x, then $\{x\}$ and B are the required disjoint $\mathcal{I}_{g^{\#}}$ -open sets containing x and B respectively. Therefore, (X, τ, \mathcal{I}) is $\mathcal{I}_{g^{\#}}$ -regular.

The following Example 3.7 shows that the reverse direction of the above Theorem 3.6 is not true.

Example 3.7. Consider the real line \mathcal{R} with the usual topology with $\mathcal{I} = \{\phi\}$. Since \mathcal{R} is regular, \mathcal{R} is $\mathcal{I}_{g^{\#}}$ -regular. Obviously U = (0,1) is αg -open being open in \mathcal{R} . But U is not \star -closed because, when $\mathcal{I} = \{\phi\}$, $cl^*(U) = cl(U) = [0,1] \neq U$.

References

- J.Dontchev, M.Ganster and T.Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica., 49(1999), 395-401.
- [2] J.Dontchev, M.Ganster and D.Rose, Ideal resolvability, Topology and its Applications, 93(1999), 1-16.
- [3] E.Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [4] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [5] M.Kamaraj, V.Ba.Vijeyrani and O.Ravi, g[#]-closed sets in ideal topological spaces, International Journal of Mathematics And its Applications, 4(2-C)(2016), 73-83.
- [6] K.Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- [7] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [8] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Math., 15(1994), 51-63.
- [9] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phy. Soc. Egypt, 53(1982), 47-53.
- [10] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar., 41(1983), 213-218.
- [11] M.Navaneethakrishnan, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India, (2009).
- [12] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(3)(1965), 961-970.
- [13] T.Noiri, Almost αg -closed functions and separation axioms, Acta Math. Hungar., 82(3)(1999), 193-205.
- [14] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2)(1993), 211-219.
- [15] V.Renuka Devi, D.Sivaraj and T.Tamizh Chelvam, Codense and completely codense ideals, Acta Math. Hungar., 108(3)(2005), 197-205.
- [16] M.K.Singal and A.R.Singal, Mildly normal spaces, Kyungpook Math. J., 13(1973), 27-31.
- [17] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [18] R.Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
- [19] M.K.R.S.Veerakumar, g[#]-closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. Math., 24(2003), 1-13.