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equation
n∑

v=0
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random variables. Throughout the paper n is considered to be very large and µ’s denote positive constants assuming
different values in different occurrences.
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1. Introduction

Nn(ω) is the number of zeros of the random transcendental Polynomial

fn (z, ω) =

n∑

v=0

dvξv (ω) z
v (1)

and dv’s be non-zero real numbers, when ξv (ω)’s are symmetric stable variates with characteristic function

exp (−C |t|α) , C > 0, 1 < α ≤ 2.

Assuming the coefficients ξv (ω)’s are non-identically distributed dependent random variables on probability space (Ω, B, P ).

Define Normal Distribution with mean zero and joint density function

M
1

2 (2π)
−n

2 exp

(
−1

2
a
′

Ma

)
, a

′

= [ξ1 (ω) , ξ2 (ω) , . . . , ξn (ω)] (2)

where M−1 is the moment matrix with σi = 1, ρij = ρ, 0 < ρ < 1, i 6= j, i, j = 0, 1, . . . , n and a is the column vector whose

transpose is a
′

follows from [1], [2], [3]. Let G be the exceptional set defined by G =
{
ω|Nn (ω) > µ (log log n)2 log n

}
,

where µ is a positive constant. We introduce a notation λ = log n and M be the integer defined by M =
[
αλ kn

tn

]
+1, where

α is a positive constant and [.] implies the greatest integer function. Let k be the integer determined by M2k ≤ n < M2k+2.
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Again we introduce a new notation λm = m
1

2 log n the random algebraic polynomial and Mm be a sequence of integers

defined by Mm =
[
b
(

kn

tn

)
log n

]
+ 1, m = 1, 2, . . . , where b is a positive constant. Let k be the integer determined by

(2k) ! M2k
n ≤ n < (2k + 2) ! M2k+2

n .

We shall use the fact that each ξv(ω) has marginal frequency function 1

2π
exp

(
−ω2

2

)
. In this paper we have established

two theorems where the second theorem is a modified and more effective interpretation of the first one in the sense of Evans

[1], since the exceptional set G obtained in this case is independent of n. Throughout this paper n is considered to be very

large and µ’s, α’s, b’s denote positive constants assuming different values in different occurrences.

2. Preliminary and Some Results

Theorem 2.1. Let fn (z, ω)=
n∑

v=0

dvξv (ω) z
v be a random transcendental polynomial, where the ξv(ω)’s are non-identically

distributed dependent random variables with mean zero and joint density function given by (2). Let dv’s be non-zero real

numbers such that

kn

tn
= 0 (log n) , where kn= max

0≤v≤n
|dv| , tn= min

0≤v≤n
|dv|

Then there exist a positive integer n0 Such that for n > n0

Nn (ω) ≥ µ
log n

log
(

kn

tn

)
log n

and

P (G) ≤ µ
′
log
(

kn

tn

)
log n

log n
.

Where Nn(ω) is the number of real zeros of the polynomial and G is the exceptional set by G =
{
ω|Nn (ω) > µ (log log n)2 log n

}
and P (G) → 0 as n → ∞.

Proof. Let

λ = log n (3)

and M be the integer defined by

M =

[
αλ

kn

tn

]
+ 1 (4)

where α is a positive constant and [.] implies the greatest integer function. Let k be the integer determined by

M
2k ≤ n < M

2k+2 (5)

It follows from (3), (4), and (5) that, for two constants µ1 and µ2,

µ1

log n

log
(

kn

tn

)
log n

≤ k ≤ µ2

log n

log
(

kn

tn

)
log n

(6)

We shall consider fn (z, ω) at the points

zm= (1−M
−2m)

1

2 (7)
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for m =
[
k
2

]
+ 1,

[
k
2

]
+ 2,. . . ,k. Let

fn (zm, ω)=
∑

1

dvξv (ω) z
v
m+

(
∑

2

+
∑

3

)
dvξv (ω) z

v
mv = Am (ω) +Rm (ω)

where v ranges from M2m−1 + 1 to M2m+1in
∑
1

and from 0 to M2m−1 in
∑
2

and from M2m+1 + 1 to n in
∑
3

where

Am (ω)=
∑

1

dvξv (ω) z
v
m and

Rm (ω) =

(
∑

2

+
∑

3

)
dvξv (ω) z

v
m

The following lemmas are necessary for the rest proof of Theorem 2.1

Lemma 2.2. For α1 > 0, σm > α1tnM
2m, where

σm
2=(1−ρ)

∑

1

d
2
vz

2v
m +ρ

(
∑

1

dvz
v
m

)2

, (0 < ρ < 1) (*)

Proof.

∑

1

dvz
v
m > tn

∑

1

z
v
m > tnM

2m

(
B

A
√
e

)
⇒
(
∑

1

dvz
v
m

)2

> α
2
1t

2
nM

4m
, (i)

α1 is a positive constant. Where A, B and constants satisfying the relations, A > 1 and 0 < B < 1. Again

∑

1

d
2
vz

2v
m >M

2m
t
2
n

(
B

Ae

)
(ii)

From (i) and (ii), (*) becomes σ2
m>α2

1t
2
nM

4m (whereα1 is a positive constant) and hence σm>α1tnM
2m. Which gives the

result.

Lemma 2.3.

P

{
ω :

∣∣∣∣∣
∑

2

dvξv (ω) z
v
m

∣∣∣∣∣>λσ̃m

}
<

√
2

π

e
−λ

2

2

λ
where σ̃

2
m=(1−ρ)

∑

2

d
2
vz

2v
m +ρ

(
∑

2

dvz
v
m

)2

, (0 < ρ < 1).

Proof. Let F (z) be the distribution function of
∑
2

dvξv (ω) z
v
m Then

P

{
ω :

∣∣∣∣∣
∑

2

dvξv (ω) z
v
m

∣∣∣∣∣>λσ̃m

}
= 1− {F (λσ̃m)−F (−λσ̃m)}

=

√
2

π

∫ ∞

λ

e
−t

2

2 dt <

√
2

π

e
−λ

2

2

λ

Lemma 2.4.

P

{
ω :

∣∣∣∣∣
∑

3

dvξv (ω) z
v
m

∣∣∣∣∣ > λ ˜̃σm

}
<

√
2

π

e
−λ

2

2

λ
, where ˜̃σ

2

m=(1−ρ)
∑

3

d
2
vz

2v
m +ρ

(
∑

3

dvz
v
m

)2

, (0 < ρ < 1)

Lemma 2.5. For a fixed m,

P {ω: |Rm (ω)| < σm}>1− 2

√
2

π

e
−λ

2

2

λ

✸
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Proof. For given m, we have |Rm (ω)|<λ
(
σ̃m+˜̃σm

)
again

∑

2

d
2
vz

2v
m ≤ 2k2

nM
2m−1

and
∑

2

dvz
v
m ≤ 2knM

2m−1

Hence σ̃2
m ≤ α2

2k
2
nM

2m−1 < α2
2k

2
nM

4m−2, α2 > 0. Similarly ˜̃σ
2

m ≤ α2
3k

2
nM

2m−1 < α2
3k

2
nM

4m−2, α3 > 0. Thus

|Rm (ω)| < λ (α2+α3) knM
2m−1

<

{
λ
(

α2+α3

α1

)
kn

tn
σm

}

M
by Lemma 2.1

< σm by the definition of M

Since the distribution function of Am (ω) is

1√
2π σm

∫ z

−∞

exp

[
−
(

t2

2σ2
m

)]
dt

where

σ
2
m = (1− ρ)

∑

1

d
2
vz

2v
m + ρ

(
∑

1

dvz
v
m

)2

, 0 < ρ < 1

The distribution function of Am

σm
is

1√
2π

∫ z

−∞

exp

[
−
(
t2

2

)]
dt = D (z) (say)

Now let us define random events Em and Fm by

Em= {ω:A2m (ω)≥σ2m, A2m+1 (ω)<− σ2m−1}

Fm= {ω:A2m (ω)<− σ2m, A2m+1 (ω)≥σ2m+1}

It can be easily seen that P (Em∪Fm) > δ > 0, where δ is a positive constant. Then proceeding exactly as Samal and Mishra

[3] we shall get the following results.

Nn (ω) > µ1k ≥ µlog n

log
(

kn

tn

)
log n

by(6)

and

P (G) < µ1k
1

λe
λ2

2

+
µ2

k
≤ µ

′





log
(

kn

tn

)
log n

logn





Since kn

tn
= 0 (log n) , P (G)→0 as n→∞. Hence the Theorem 2.1.

Theorem 2.6. Let

fn (z, ω)=
n∑

v=0

dvξv (ω) z
v

be a random transcendental polynomial, where the ξv(ω)’s are non-identically distributed dependent random variables with

mean zero and joint density function given by (2). Let dv’s be non-zero real numbers, such that

kn

tn
= 0 (log n) , where kn= max

0≤v≤n
|dv| , tn= min

0≤v≤n
|dv|

4
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Then there exist a positive integer n0 such that for n > n0

Nn (ω) ≥ µ
log n

log
(

kn

tn
log n

) and

P (G) ≤ µ
′





log
(
log
(

kn0

tn0

)
logn0

)

logn0





1

2

Nn(ω) is the number of real zeros of the polynomial and G is the exceptional set.

Proof. Let

λm = m
1

2 log n (8)

and Mm be a sequence of integers defined by

Mm =

[
b

(
kn

tn

)
log n

]
+ 1, m = 1, 2, . . . (9)

where b is a positive constant. Let k be the integer determined by

(2k) ! M2k
n ≤ n < (2k + 2) ! M2k+2

n (10)

It follows from (9) and (10) that for two constants µ1 and µ2

µ1

log n

log
(

kn

tn
log n

) ≤ k≤ µ2

log n

log
(

kn

tn
log n

) (11)

We consider fn (z, ω) at the points

zm=

{
1− 1

(2k) ! M2m
m

} 1

2

(12)

for m =
[
k
2

]
+1,

[
k
2

]
+2, . . . . . . ., k. for large n we write

fn (zm, ω)=Am (ω)+ Rm (ω)

where

Am (ω)=
∑

1

dvξv (ω) z
v
m

and Rm (ω)=

(
∑

2

+
∑

3

)
dvξv (ω) z

v
m

and the index v ranges from (2m− 1)! M2m−1
m + 1 to (2m+ 1)! M2m+1

m in
∑
1

and from 0 to (2m− 1)! M2m−1
m in

∑
2

and

from (2m+ 1)! M2m+1
m + 1 to n in

∑
3

The following lemmas are necessary for the rest proof of Theorem 2.6.

Lemma 2.7. For r1 > 0, σm > r1tn (2m)! M2m
m , where

σ
2
m=(1−ρ)

∑

1

d
2
vz

2v
m +ρ

(
∑

1

dvz
v
m

)2

, 0 < ρ < 1 (*)

✺
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Proof.
∑

1

d
2
vz

2v
m >t

2
n

(
(2m) !M2m

m

B

Ae

)2

, where A > 1, 0 < B < 1 (i)

and (
∑

1

dvz
v
m

)2

>t
2
n

(
∑

1

z
v
m

)2

>t
2
n

(
(2m) !M2m

m

B

A
√
e

)2

(ii)

From (i) and (ii), (*) becomes

σ
2
m > (1−ρ) t2n

(
(2m) !M2m

m

B

Ae

)2

+ ρt
2
n

(
(2m) !M2m

m

B

A
√
e

)2

And hence

σm > r1tn (2m) ! M2m
m

Again the following two Lemmas 2.8 and 2.9 can be proved as the process that has been adopted in Theorem 2.1.

Lemma 2.8.

P

{
ω:

∣∣∣∣∣
∑

2

dvξv (ω) z
v
m

∣∣∣∣∣<λqm

}
<

√
2

π

e
−λ

2

2

λ
where qm

2=(1−ρ)
∑

2

d
2
vz

2v
m + ρ

(
∑

2

dvz
v
m

)2

.

Lemma 2.9.

P

{
ω:

∣∣∣∣∣
∑

3

dvξv (ω) z
v
m

∣∣∣∣∣<λQ
2
m

}
<

√
2

π

e
−λ

2

2

λ
where Q

2
m=(1−ρ)

∑

3

d
2
vz

2v
m + ρ

(
∑

3

dvz
v
m

)2

.

Lemma 2.10. For a fixed m, P { ω: |Rm (ω)|<σm}>1− 2
√

2

π
e
−λ

2

2

λ
.

Proof. For a given m, we have |Rm (ω)|<λ(qm+Qm). Now

∑

2

d
2
vz

2v
m ≤ 2k2

n(2m− 1) ! M2m−1

m and

∑

2

dvz
v
m≤ 2kn (2m− 1) ! M2m−1

m

qm
2≤ r2kn(2m− 1) ! M2m−1

m , where r2 is a positive constant < r2kn(2m) ! M2m−1

m . Similarly Q2
m< r3kn(2m) ! M2m−1

m ,

where r3 is a positive constant. So,

|Rm (ω)|< λkn
M2m

m (r2+r3)

Mm

< σm.

Therefore |Rm (ω)|< σm except for a set of measure at most

2

√
2

π

e
−λ

2

2

λ
(by definition of Mm)

for m =

[
k

2

]
+1,

[
k

2

]
+2, . . . , k.

Now defining the Em and Fm as in Theorem 2.1, we can have P (EmUFm) > δ > 0, where δ is an absolute constant. Now

let us define random variables Xm (ω) , Ym(ω) and net Gm as

Xm (ω) =





1, if ω ∈ Em ∪ Fm

0, if ω ∈ (Em ∪ Fm)
′

.

6
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Thus

P { ω:Xm (ω)= 1}=δ

and

P { ω:Xm (ω)= 0}= 1−δ

Let Gm={ ω: |R2m (ω)|<σ2m and R2m+1 (ω)<σ2m+1} and

Ym (ω) =





0, if ω ∈ Gm;

1, if ω ∈ (Gm)
′

.

Let Tm (ω)=Xm (ω)−Xm (ω)Ym (ω). If Tm (ω)= 1, then there exist a zero of the polynomial in the interval (z2m, z2m+1).

Now proceeding as Samal and Mishra [3] we get,

Nn(ω) ≥ µ1k

≥ µ
log n

log
(

kn

tn
log n

) by (11)

and P (G) ≤ µ2

k0
+µ3

∑

k≥2k0−1

exp

(
−λ2

m0

2

)

λm0

≤ µ2

k0
+µ4

∑

k≥2k0−1

1

λ3
m0

≤ µ2

k0
+2µ4

∑

k≥k0

1

k
3

2

≤ µ2

k0
+2µ4

(
2

k
1

2

0

)

≤ µ
′





log
(
log
(

kn0

tn0

)
logn0

)

logn0





1

2

by (11)

hence the Theorem 2.6.
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