

International Journal of Current Research in Science and Technology

The Lower Bound Estimation for the Number of Zeros of Random Transcendental Polynomial

Research Article

Ajaya Kumar Singh^{1*}

1 Department of Mathematics, P.N.College (Autonomous), Khordha, India.

Abstract: The object of this paper is to find a lower bound estimation for the number of zeros of the random transcendental equation $\sum_{v=0}^{n} d_v \xi_v(\omega) z^v = 0$, subject to the condition that the coefficients are non-identically distributed dependent random variables. Throughout the paper n is considered to be very large and μ 's denote positive constants assuming different values in different occurrences. MSC: 60BXX.

Keywords: Probability spaces, Characteristic function, Joint density function, Moment matrix, Exceptional set, Marginal frequency function, Distribution function.
 (c) JS Publication.

1. Introduction

 $N_n(\omega)$ is the number of zeros of the random transcendental Polynomial

$$f_n(z, \omega) = \sum_{\nu=0}^n d_\nu \xi_\nu(\omega) z^\nu$$
(1)

and d_v 's be non-zero real numbers, when $\xi_v(\omega)$'s are symmetric stable variates with characteristic function

$$\exp(-C|t|^{\alpha}), \ C > 0, \ 1 < \alpha \le 2$$

Assuming the coefficients $\xi_v(\omega)$'s are non-identically distributed dependent random variables on probability space (Ω, B, P) . Define Normal Distribution with mean zero and joint density function

$$M^{\frac{1}{2}}(2\pi)^{\frac{-n}{2}}exp\left(\frac{-1}{2}\overline{a}'M\overline{a}\right), \qquad \overline{a}' = [\xi_1(\omega), \ \xi_2(\omega), \ \dots, \ \xi_n(\omega)]$$
(2)

where M^{-1} is the moment matrix with $\sigma_i = 1$, $\rho_{ij} = \rho$, $0 < \rho < 1$, $i \neq j$, $i, j = 0, 1, \ldots, n$ and \overline{a} is the column vector whose transpose is \overline{a}' follows from [1], [2], [3]. Let G be the exceptional set defined by $G = \{\omega | N_n(\omega) > \mu (\log \log n)^2 \log n\}$, where μ is a positive constant. We introduce a notation $\lambda = \log n$ and M be the integer defined by $M = [\alpha \lambda \frac{k_n}{t_n}] + 1$, where α is a positive constant and [.] implies the greatest integer function. Let k be the integer determined by $M^{2k} \leq n < M^{2k+2}$.

⁶ E-mail: ajayakumarsingh1966@gmail.com

Again we introduce a new notation $\lambda_m = m^{\frac{1}{2}} \log n$ the random algebraic polynomial and M_m be a sequence of integers defined by $M_m = \left[b\left(\frac{k_n}{t_n}\right) \log n \right] + 1, m = 1, 2, \dots$, where b is a positive constant. Let k be the integer determined by

$$(2k)! M_n^{2k} \le n < (2k+2)! M_n^{2k+2}$$

We shall use the fact that each $\xi_v(\omega)$ has marginal frequency function $\frac{1}{2\pi}exp\left(-\frac{\omega^2}{2}\right)$. In this paper we have established two theorems where the second theorem is a modified and more effective interpretation of the first one in the sense of Evans [1], since the exceptional set G obtained in this case is independent of n. Throughout this paper n is considered to be very large and μ 's, α 's, b's denote positive constants assuming different values in different occurrences.

2. Preliminary and Some Results

Theorem 2.1. Let $f_n(z, \omega) = \sum_{v=0}^n d_v \xi_v(\omega) z^v$ be a random transcendental polynomial, where the $\xi_v(\omega)$'s are non-identically distributed dependent random variables with mean zero and joint density function given by (2). Let d_v 's be non-zero real numbers such that

$$\frac{k_n}{t_n} = 0 (\log n), \text{ where } k_n = \max_{0 \le v \le n} |d_v|, t_n = \min_{0 \le v \le n} |d_v|$$

Then there exist a positive integer n_0 Such that for $n > n_0$

$$N_n(\omega) \geq \mu \frac{\log n}{\log\left(\frac{k_n}{t_n}\right)\log n}$$

and

$$P(G) \leq \mu' \frac{\log\left(\frac{k_n}{t_n}\right)\log n}{\log n}.$$

Where $N_n(\omega)$ is the number of real zeros of the polynomial and G is the exceptional set by $G = \{\omega | N_n(\omega) > \mu (\log \log n)^2 \log n\}$ and $P(G) \to 0$ as $n \to \infty$.

Proof. Let

$$\lambda = \log n \tag{3}$$

and M be the integer defined by

$$M = \left[\alpha \lambda \frac{k_n}{t_n}\right] + 1 \tag{4}$$

where α is a positive constant and [.] implies the greatest integer function. Let k be the integer determined by

$$M^{2k} \le n < M^{2k+2} \tag{5}$$

It follows from (3), (4), and (5) that, for two constants μ_1 and μ_2 ,

$$\mu_1 \frac{\log n}{\log\left(\frac{k_n}{t_n}\right)\log n} \le k \le \mu_2 \frac{\log n}{\log\left(\frac{k_n}{t_n}\right)\log n} \tag{6}$$

We shall consider $f_n(z, \omega)$ at the points

$$z_m = (1 - M^{-2m})^{\frac{1}{2}} \tag{7}$$

for $m = \left[\frac{k}{2}\right] + 1$, $\left[\frac{k}{2}\right] + 2$,...,k. Let

$$f_n(z_m, \omega) = \sum_1 d_v \xi_v(\omega) z_m^v + \left(\sum_2 + \sum_3\right) d_v \xi_v(\omega) z_m^v v = A_m(\omega) + R_m(\omega)$$

where v ranges from $M^{2m-1} + 1$ to $M^{2m+1}in\sum_{1}$ and from 0 to M^{2m-1} in \sum_{2} and from $M^{2m+1} + 1$ to n in \sum_{3} where

$$A_{m}(\omega) = \sum_{1} d_{v}\xi_{v}(\omega) z_{m}^{v} \text{ and}$$
$$R_{m}(\omega) = \left(\sum_{2} + \sum_{3}\right) d_{v}\xi_{v}(\omega) z_{m}^{v}$$

The following lemmas are necessary for the rest proof of Theorem 2.1

Lemma 2.2. For $\alpha_1 > 0$, $\sigma_m > \alpha_1 t_n M^{2m}$, where

$$\sigma_m^2 = (1-\rho) \sum_1 d_v^2 z_m^{2v} + \rho \left(\sum_1 d_v z_m^v\right)^2, \ (0 < \rho < 1)$$
^(*)

Proof.

$$\sum_{1} d_v z_m^v > t_n \sum_{1} z_m^v > t_n M^{2m} \left(\frac{B}{A\sqrt{e}}\right) \Rightarrow \left(\sum_{1} d_v z_m^v\right)^2 > \alpha_1^2 t_n^2 M^{4m},\tag{i}$$

 α_1 is a positive constant. Where A, B and constants satisfying the relations, A > 1 and 0 < B < 1. Again

$$\sum_{1} d_v^2 z_m^{2v} > M^{2m} t_n^2 \left(\frac{B}{Ae}\right) \tag{ii}$$

From (i) and (ii), (*) becomes $\sigma_m^2 > \alpha_1^2 t_n^2 M^{4m}$ (where α_1 is a positive constant) and hence $\sigma_m > \alpha_1 t_n M^{2m}$. Which gives the result.

Lemma 2.3.

$$P\left\{\omega: \left|\sum_{2} d_{v}\xi_{v}\left(\omega\right) z_{m}^{v}\right| > \lambda \widetilde{\sigma}_{m}\right\} < \sqrt{\frac{2}{\pi}} \frac{e^{\frac{-\lambda^{2}}{2}}}{\lambda} \quad where \quad \widetilde{\sigma}_{m}^{2} = (1-\rho)\sum_{2} d_{v}^{2} z_{m}^{2v} + \rho \left(\sum_{2} d_{v} z_{m}^{v}\right)^{2}, \quad (0 < \rho < 1).$$

Proof. Let F(z) be the distribution function of $\sum_{2} d_{v}\xi_{v}(\omega) z_{m}^{v}$ Then

$$P\left\{\omega: \left|\sum_{2} d_{v}\xi_{v}\left(\omega\right) z_{m}^{v}\right| > \lambda\widetilde{\sigma}_{m}\right\} = 1 - \left\{F\left(\lambda\widetilde{\sigma}_{m}\right) - F\left(-\lambda\widetilde{\sigma}_{m}\right)\right\}$$
$$= \sqrt{\frac{2}{\pi}} \int_{\lambda}^{\infty} e^{\frac{-t^{2}}{2}} dt < \sqrt{\frac{2}{\pi}} \frac{e^{\frac{-\lambda^{2}}{2}}}{\lambda}$$

Lemma 2.4.

$$P\left\{\omega: \left|\sum_{3} d_{v}\xi_{v}\left(\omega\right) z_{m}^{v}\right| > \left|\lambda\right| \widetilde{\widetilde{\sigma}}_{m}\right\} < \sqrt{\frac{2}{\pi}} \frac{e^{\frac{-\lambda^{2}}{2}}}{\lambda}, \quad where \quad \widetilde{\widetilde{\sigma}}_{m}^{2} = (1-\rho)\sum_{3} d_{v}^{2} z_{m}^{2v} + \rho\left(\sum_{3} d_{v} z_{m}^{v}\right)^{2}, \quad (0 < \rho < 1)$$

Lemma 2.5. For a fixed m,

$$P\left\{\omega:\left|R_{m}\left(\omega\right)\right|<\sigma_{m}\right\}>1-2\sqrt{\frac{2}{\pi}}\frac{e^{-\frac{\lambda^{2}}{2}}}{\lambda}$$

 $\textit{Proof.} \quad \text{For given m, we have } |R_m\left(\omega\right)| \! < \! \lambda \left(\widetilde{\sigma}_m \! + \! \widetilde{\widetilde{\sigma}}_m \right) \, \text{again}$

$$\sum_{2} d_{v}^{2} z_{m}^{2v} \leq 2k_{n}^{2} M^{2m-1} \text{ and } \sum_{2} d_{v} z_{m}^{v} \leq 2k_{n} M^{2m-1}$$

Hence $\tilde{\sigma}_m^2 \leq \alpha_2^2 k_n^2 M^{2m-1} < \alpha_2^2 k_n^2 M^{4m-2}, \alpha_2 > 0$. Similarly $\tilde{\tilde{\sigma}}_m^2 \leq \alpha_3^2 k_n^2 M^{2m-1} < \alpha_3^2 k_n^2 M^{4m-2}, \alpha_3 > 0$. Thus

$$\begin{aligned} |R_m(\omega)| &< \lambda \left(\alpha_2 + \alpha_3\right) k_n M^{2m-1} \\ &< \frac{\left\{\lambda \left(\frac{\alpha_2 + \alpha_3}{\alpha_1}\right) \frac{k_n}{t_n} \sigma_m\right\}}{M} \quad \text{by Lemma 2.1} \end{aligned}$$

 $< \sigma_m$ by the definition of M

Since the distribution function of $A_m(\omega)$ is

$$\frac{1}{\sqrt{2\pi} \sigma_m} \int_{-\infty}^z exp\left[-\left(\frac{t^2}{2\sigma_m^2}\right)\right] dt$$

where

$$\sigma_m^2 = (1-\rho) \sum_1 d_v^2 z_m^{2v} + \rho \left(\sum_1 d_v z_m^v \right)^2, \ 0 < \rho < 1$$

The distribution function of $\frac{A_m}{\sigma_m}$ is

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp\left[-\left(\frac{t^2}{2}\right)\right] dt = D(z) \quad (say)$$

Now let us define random events E_m and F_m by

$$E_m = \{ \omega : A_{2m} (\omega) \ge \sigma_{2m}, A_{2m+1} (\omega) < -\sigma_{2m-1} \}$$
$$F_m = \{ \omega : A_{2m} (\omega) < -\sigma_{2m}, A_{2m+1} (\omega) \ge \sigma_{2m+1} \}$$

It can be easily seen that $P(E_m \cup F_m) > \delta > 0$, where δ is a positive constant. Then proceeding exactly as Samal and Mishra [3] we shall get the following results.

$$N_n(\omega) > \mu_1 k \ge \frac{\mu \log n}{\log\left(\frac{k_n}{t_n}\right)\log n}$$
 by(6)

and

$$P(G) < \mu_1 k \frac{1}{\lambda e^{\frac{\lambda^2}{2}}} + \frac{\mu_2}{k} \le \mu' \left\{ \frac{\log\left(\frac{k_n}{t_n}\right)\log n}{\log n} \right\}$$

Since $\frac{k_n}{t_n} = 0 (\log n), P(G) \rightarrow 0 as n \rightarrow \infty$. Hence the Theorem 2.1.

Theorem 2.6. Let

$$f_n(z, \omega) = \sum_{v=0}^n d_v \xi_v(\omega) z^v$$

be a random transcendental polynomial, where the $\xi_v(\omega)$'s are non-identically distributed dependent random variables with mean zero and joint density function given by (2). Let d_v 's be non-zero real numbers, such that

$$\frac{k_n}{t_n} = 0 \left(\log n \right), \text{ where } k_n = \max_{0 \le v \le n} |d_v|, t_n = \min_{0 \le v \le n} |d_v|$$

4

Then there exist a positive integer n_0 such that for $n > n_0$

$$N_{n}(\omega) \geq \mu \frac{\log n}{\log\left(\frac{k_{n}}{t_{n}}\log n\right)} \text{ and}$$
$$P(G) \leq \mu \left(\frac{\log\left(\log\left(\frac{k_{n_{0}}}{t_{n_{0}}}\right)\log n\right)}{\log n_{0}} \right)^{\frac{1}{2}}$$

 $N_n(\omega)$ is the number of real zeros of the polynomial and G is the exceptional set.

Proof. Let

$$\lambda_m = m^{\frac{1}{2}} \log n \tag{8}$$

and M_m be a sequence of integers defined by

$$M_m = \left[b\left(\frac{k_n}{t_n}\right) \log n \right] + 1, \ m = 1, \ 2, \dots$$
(9)

where b is a positive constant. Let k be the integer determined by

$$(2k)! M_n^{2k} \le n < (2k+2)! M_n^{2k+2}$$
(10)

It follows from (9) and (10) that for two constants μ_1 and μ_2

$$\mu_1 \frac{\log n}{\log\left(\frac{k_n}{t_n}\log n\right)} \le k \le \mu_2 \frac{\log n}{\log\left(\frac{k_n}{t_n}\log n\right)}$$
(11)

We consider $f_n(z, \omega)$ at the points

$$z_m = \left\{ 1 - \frac{1}{(2k)! \, M_m^{2m}} \right\}^{\frac{1}{2}} \tag{12}$$

for $m = \left[\frac{k}{2}\right] + 1$, $\left[\frac{k}{2}\right] + 2, \dots, k$. for large n we write

$$f_n(z_m, \omega) = A_m(\omega) + R_m(\omega)$$

where

$$A_{m}(\omega) = \sum_{1} d_{v}\xi_{v}(\omega) z_{m}^{v}$$

and
$$R_{m}(\omega) = \left(\sum_{2} + \sum_{3}\right) d_{v}\xi_{v}(\omega) z_{m}^{v}$$

and the index v ranges from $(2m-1)! M_m^{2m-1} + 1$ to $(2m+1)! M_m^{2m+1}$ in \sum_1 and from 0 to $(2m-1)! M_m^{2m-1}$ in \sum_2 and from $(2m+1)! M_m^{2m+1} + 1$ to n in \sum_3

The following lemmas are necessary for the rest proof of Theorem 2.6.

Lemma 2.7. For $r_1 > 0$, $\sigma_m > r_1 t_n (2m)! M_m^{2m}$, where

$$\sigma_m^2 = (1-\rho) \sum_1 d_v^2 z_m^{2v} + \rho \left(\sum_1 d_v z_m^v\right)^2, \ 0 < \rho < 1 \tag{*}$$

Proof.

$$\sum_{1} d_v^2 z_m^{2v} > t_n^2 \left((2m) ! M_m^{2m} \frac{B}{Ae} \right)^2, \quad where \ A > 1, \ 0 < B < 1$$
(i)

and

$$\left(\sum_{1} d_{v} z_{m}^{v}\right)^{2} > t_{n}^{2} \left(\sum_{1} z_{m}^{v}\right)^{2} > t_{n}^{2} \left((2m) ! M_{m}^{2m} \frac{B}{A\sqrt{e}}\right)^{2}$$
(ii)

From (i) and (ii), (*) becomes

$$\sigma_m^2 > (1-\rho) t_n^2 \left((2m) ! M_m^{2m} \frac{B}{Ae} \right)^2 + \rho t_n^2 \left((2m) ! M_m^{2m} \frac{B}{A\sqrt{e}} \right)^2$$

And hence

$$\sigma_m > r_1 t_n \left(2m\right) ! M_m^{2m}$$

Again the following two Lemmas 2.8 and 2.9 can be proved as the process that has been adopted in Theorem 2.1.

Lemma 2.8.

$$P\left\{\omega: \left|\sum_{2} d_{v}\xi_{v}\left(\omega\right) z_{m}^{v}\right| < \lambda q_{m}\right\} < \sqrt{\frac{2}{\pi}} \frac{e^{\frac{-\lambda^{2}}{2}}}{\lambda} \quad where \quad q_{m}^{2} = (1-\rho)\sum_{2} d_{v}^{2} z_{m}^{2v} + \rho\left(\sum_{2} d_{v} z_{m}^{v}\right)^{2}.$$

Lemma 2.9.

$$P\left\{\omega: \left|\sum_{3} d_{v}\xi_{v}\left(\omega\right) z_{m}^{v}\right| < \lambda Q_{m}^{2}\right\} < \sqrt{\frac{2}{\pi}} \frac{e^{\frac{-\lambda^{2}}{2}}}{\lambda} \quad where \quad Q_{m}^{2} = (1-\rho)\sum_{3} d_{v}^{2} z_{m}^{2v} + \rho\left(\sum_{3} d_{v} z_{m}^{v}\right)^{2}.$$

Lemma 2.10. For a fixed m, $P \{ \omega: |R_m(\omega)| < \sigma_m \} > 1 - 2\sqrt{\frac{2}{\pi}} \frac{e^{-\lambda^2}}{\lambda}.$

Proof. For a given m, we have $|R_m(\omega)| < \lambda(q_m + Q_m)$. Now

$$\sum_{2} d_{v}^{2} z_{m}^{2v} \leq 2k_{n}^{2} (2m-1) ! M_{m}^{2m-1} \text{ and}$$

$$\sum_{2} d_{v} z_{m}^{v} \leq 2k_{n} (2m-1) ! M_{m}^{2m-1}$$

 $q_m^2 \leq r_2 k_n (2m-1)! M_m^{2m-1}$, where r_2 is a positive constant $< r_2 k_n (2m)! M_m^{2m-1}$. Similarly $Q_m^2 < r_3 k_n (2m)! M_m^{2m-1}$, where r_3 is a positive constant. So,

$$|R_m(\omega)| < \lambda k_n \frac{M_m^{2m}(r_2 + r_3)}{M_m} < \sigma_m.$$

Therefore $|R_m(\omega)| < \sigma_m$ except for a set of measure at most

$$2\sqrt{\frac{2}{\pi}} \frac{e^{\frac{-\lambda^2}{2}}}{\lambda} \qquad (by \ definition \ of \ M_m)$$

for $m = \left[\frac{k}{2}\right] + 1, \ \left[\frac{k}{2}\right] + 2, \dots, k.$

Now defining the E_m and F_m as in Theorem 2.1, we can have $P(E_m U F_m) > \delta > 0$, where δ is an absolute constant. Now let us define random variables $X_m(\omega)$, $Y_m(\omega)$ and net G_m as

$$X_{m}(\omega) = \begin{cases} 1, & \text{if } \omega \in E_{m} \cup F_{m} \\ 0, & \text{if } \omega \in (E_{m} \cup F_{m})' \end{cases}$$

6

Thus

$$P\left\{ \omega: X_m(\omega) = 1 \right\} = \delta$$

and

$$P\left\{ \omega: X_m\left(\omega\right) = 0 \right\} = 1 - \delta$$

Let $G_m = \{ \omega : |R_{2m}(\omega)| < \sigma_{2m} \text{ and } R_{2m+1}(\omega) < \sigma_{2m+1} \}$ and

$$Y_m(\omega) = \begin{cases} 0, & \text{if } \omega \in G_m; \\ 1, & \text{if } \omega \in (G_m)'. \end{cases}$$

Let $T_m(\omega) = X_m(\omega) - X_m(\omega) Y_m(\omega)$. If $T_m(\omega) = 1$, then there exist a zero of the polynomial in the interval (z_{2m}, z_{2m+1}) . Now proceeding as Samal and Mishra [3] we get,

$$N_{n}(\omega) \geq \mu_{1}k$$

$$\geq \mu \frac{\log n}{\log\left(\frac{k_{n}}{t_{n}}\log n\right)} \qquad by (11)$$
and
$$P(G) \leq \frac{\mu_{2}}{k_{0}} + \mu_{3} \sum_{k\geq 2k_{0}-1} \frac{exp\left(-\frac{\lambda_{m_{0}}^{2}}{2}\right)}{\lambda_{m_{0}}}$$

$$\leq \frac{\mu_{2}}{k_{0}} + \mu_{4} \sum_{k\geq k_{0}-1} \frac{1}{\lambda_{m_{0}}^{3}}$$

$$\leq \frac{\mu_{2}}{k_{0}} + 2\mu_{4} \sum_{k\geq k_{0}} \frac{1}{k^{\frac{3}{2}}}$$

$$\leq \frac{\mu_{2}}{k_{0}} + 2\mu_{4} \left(\frac{2}{k_{0}^{\frac{1}{2}}}\right)$$

$$\leq \mu' \left\{ \frac{\log\left(\log\left(\frac{k_{n_{0}}}{t_{n_{0}}}\right)\log n_{0}\right)}{\log n_{0}} \right\}^{\frac{1}{2}} \qquad by (11)$$

hence the Theorem 2.6.

References

- [1] E.A.Evans, On the number of a random algebraic equation, Proc. London Math. Soc., 3(15)(1965), 731-749.
- [2] G.Samal, Onthe number of real roots of a random algebraic equation, Proc. Cambridge Philos. Soc., 58(1962), 433-442.
- [3] G.Samal and M.N.Mishra, On the lower bound of the number of real roots of a randomalgebraic with infinite variance, Proc. Am. Math. Soc., 33(1972), 523-528.
- [4] M.Sambandham, On the upper bound of the number of real zeros of a random algebraic equation, J. Indian Math. Soc., 42(1978), 15-26.