

International Journal of Current Research in Science and Technology

Intuitionistic Fuzzy g'''-Closed Sets

Research Article

S.Rose Mary¹, R.Malarvizhi² and O.Ravi³*

1 Department of Mathematics, Fatima College, Madurai, Tamil Nadu, India.

2 Department of Mathematics, Knowledge Institute of Technology, Kakapalayam, Salem, Tamil Nadu, India.

3 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

Abstract: In this paper, we introduce the concepts of intuitionistic fuzzy g^{'''}-closed sets and intuitionistic fuzzy g^{'''}-open sets. Further, we study some of their properties.
MSC: 54A40, 03F55.

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy g'''-closed set, Intuitionistic fuzzy g'''-open set. © JS Publication.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [18] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. The concept of generalized closed sets in topological spaces was introduced by Levine [8]. In this paper we introduce intuitionistic fuzzy g'''-closed sets and intuitionistic fuzzy g'''-open sets. The relations between intuitionistic fuzzy g'''-closed sets and other intuitionistic fuzzy generalized closed sets are given.

2. Preliminaries

Definition 2.1 ([1]). Let X be a non empty set. An intuitionistic fuzzy set (IFS in short) A in X can be described in the form

$$A = \{ \langle x, \, \mu_A(x), \, \nu_A(x) \rangle \mid x \in X \}$$

where the function $\mu_A : X \to [0, 1]$ is called the membership function and $\mu_A(x)$ denotes the degree to which $x \in A$ and the function $\nu_A : X \to [0, 1]$ is called the non-membership function and $\nu_A(x)$ denotes the degree to which $x \notin A$ and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote IFS(X), the set of all intuitionistic fuzzy sets in X.

Throughout the paper, X denotes a non empty set.

Definition 2.2 ([1]). Let A and B be any two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X\}$. $|x \in X\}$. Then

^{*} E-mail: siingam@yahoo.com

- (1). $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,
- (2). A = B if and only if $A \subseteq B$ and $B \subseteq A$,
- (3). $A^{c} = \{ \langle x, \nu_{A}(x), \mu_{A}(x) \rangle \mid x \in X \},\$
- (4). $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle \mid x \in X \},$
- (5). $A \cup B = \{ \langle x, \mu_A(x) \vee \mu_B(x), \nu_A(x) \wedge \nu_B(x) \rangle \mid x \in X \}.$

Definition 2.3 ([1]). The intuitionistic fuzzy sets $0_{\sim} = \{\langle x, 0, 1 \rangle \mid x \in X\}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle \mid x \in X\}$ are called the empty set and the whole set of X respectively.

Definition 2.4 ([1]). Let A and B be any two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X\}$. Then

- (1). $A \subseteq B$ and $A \subseteq C \Rightarrow A \subseteq B \cap C$,
- (2). $A \subseteq C$ and $B \subseteq C \Rightarrow A \cup B \subseteq C$,
- (3). $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$,
- (4). $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$,
- (5). $((A)^c)^c = A$,
- (6). $(1_{\sim})^c = 0_{\sim} \text{ and } (0_{\sim})^c = 1_{\sim}.$

Definition 2.5 ([3]). An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms :

- (1). $\theta_{\sim}, \ 1_{\sim} \in \tau,$
- (2). $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (3). \cup $G_i \in \tau$ for any family $\{G_i \mid i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.6 ([3]). Let (X, τ) be an IFTS and $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ be an IFS in X. Then the intuitionistic fuzzy interior and the intuitionistic fuzzy closure are defined as follows:

 $int(A) = \bigcup \{G \mid G \text{ is an IFOS in } X \text{ and } G \subseteq A\},$ $cl(A) = \cap \{K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$

Proposition 2.7 ([3]). For any IFSs A and B in (X, τ) , we have

- (1). $int(A) \subseteq A$,
- (2). $A \subseteq cl(A)$,
- (3). A is an IFCS in $X \Leftrightarrow cl(A) = A$,

- (4). A is an IFOS in $X \Leftrightarrow int(A) = A$,
- (5). $A \subseteq B \Rightarrow int(A) \subseteq int(B)$ and $cl(A) \subseteq cl(B)$,
- (6). int(int(A)) = int(A),
- (7). cl(cl(A)) = cl(A),
- (8). $cl(A \cup B) = cl(A) \cup cl(B)$,
- (9). $int(A \cap B) = int(A) \cap int(B)$.

Proposition 2.8 ([3]). For any IFS A in (X, τ) , we have

- (1). $int(0_{\sim}) = 0_{\sim}$ and $cl(0_{\sim}) = 0_{\sim}$,
- (2). $int(1_{\sim}) = 1_{\sim} and cl(1_{\sim}) = 1_{\sim},$
- (3). $(int(A))^c = cl(A^c),$
- (4). $(cl(A))^{c} = int(A^{c}).$

Proposition 2.9 ([3]). If A is an IFCS in (X, τ) then cl(A) = A and if A is an IFOS in (X, τ) then int(A) = A. The arbitrary union of IFCSs is an IFCS in (X, τ) .

Definition 2.10. An IFS A in an IFTS (X, τ) is said to be an

(1). intuitionistic fuzzy α -closed set (IF α CS in short) if cl(int(cl(A))) $\subseteq A$, [5]

(2). intuitionistic fuzzy semi closed set (IFSCS in short) if $int(cl(A)) \subseteq A$, [4]

(3). intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A) \subseteq A, [4])$

(4). intuitionistic fuzzy semi pre closed set (IFSPCS in short) if there exists an IFPCS B such that $int(B) \subseteq A \subseteq B$. [17]

The family of all IF α CSs (resp. IFSCSs, IFPCSs, IFSPCSs) of (X, τ) is denoted by IF α C(X) (resp. IFSC(X), IFPC(X), IFSPC(X)).

Definition 2.11. An IFS A in an IFTS (X, τ) is said to be an

- (1). intuitionistic fuzzy α -open set (IF α OS in short) if $A \subseteq int(cl(int(A)))$, [5]
- (2). intuitionistic fuzzy semi open set (IFSOS in short) if $A \subseteq cl(int(A))$, [5]
- (3). intuitionistic fuzzy preopen set (IFPOS in short) if $A \subseteq int(cl(A))$, [5]
- (4). intuitionistic fuzzy semi pre open set (IFSPOS in short) if $A \subseteq cl(int(cl(A)))$. [17]

The family of all IF αOSs (resp. IFSOSs, IFPOSs, IFSPOSs) of (X, τ) is denoted by IF $\alpha O(X)$ (resp. IFSO(X), IFPO(X), IFSPO(X)).

Remark 2.12 ([7]).

$$IFCS \rightarrow IF\alpha CS \rightarrow IFSCS \rightarrow IFSPCS$$

None of the above implications are reversible.

Definition 2.13 ([13]). Let A be an IFS in an IFTS (X, τ) . Then the α -interior of A (α int(A) in short) and the α -closure of A (α cl(A) in short) are defined as follows:

$$\begin{aligned} \alpha int(A) &= \cup \{ G \mid G \text{ is an } IF\alpha OS \text{ in } (X, \tau) \text{ and } G \subseteq A \}, \\ \alpha cl(A) &= \cap \{ K \mid K \text{ is an } IF\alpha CS \text{ in } (X, \tau) \text{ and } A \subseteq K \}. \end{aligned}$$

sint(A), scl(A), spint(A) and spcl(A) are similarly defined. For any IFS A in (X, τ) , we have $\alpha cl(A^c) = (\alpha int(A))^c$ and $\alpha int(A^c) = (\alpha cl(A))^c$.

Remark 2.14 ([13]). Let A be an IFS in an IFTS (X, τ) . Then

- (1). $\alpha cl(A) = A \cup cl(int(cl(A))),$
- (2). $\alpha int(A) = A \cap int(cl(int(A))).$
- **Definition 2.15.** An IFS A in (X, τ) is said to be an
- (1). intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) , [15]
- (2). intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in $(X, \tau), [9]$
- (3). intuitionistic fuzzy α generalized closed set (IF α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in (X, τ), [13]
- (4). intuitionistic fuzzy α generalized semi closed set (IF α GSCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFSOS in (X, τ), [6]
- (5). intuitionistic fuzzy ω closed set (IF ω CS in short) if cl(A) \subseteq U whenever A \subseteq U and U is an IFSOS in (X, τ), [14]
- (6). intuitionistic fuzzy generalized semi pre closed set (IFGSPCS in short) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) . [11]

The family of all IFGCSs (resp. IFGSCSs, IF α GCSs, IF α CSs, IFGSPCSs) of (X, τ) is denoted by IFGC(X), IFGSC(X), IF α GC(X), IF α GC(X), IFGSPC(X)).

The family of all IFGOSs (resp. IFGSOSs, IF α GOSs, IF α OSs, IFGSPOSs) of (X, τ) is denoted by IFGO(X), IFGSO(X), IF α GO(X), IF α GO(X), IFGSPC(X)).

Remark 2.16 ([14]).

- (1). Every IFOS is an IFGSOS,
- (2). Every IFSOS is an IFGSOS.

Definition 2.17 ([16]). Two IFSs A and B are said to be q-coincident (AqB in short) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$. For any two IFS A and B of (X, τ) , $A\bar{q}B$ if and only if $A \subseteq B^c$.

3. Intuitionistic Fuzzy g''-closed Sets

In this section we introduce intuitionistic fuzzy g'''-closed sets and study some of its properties.

Definition 3.1. An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy g'''-closed set (IFG'''CS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in IFGSO(X)$. The collection of all intuituionistic fuzzy g'''-closed sets in X is denoted by IFG'''C(X).

Example 3.2. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2$, $\mu_G(b) = 0.3$, $\nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Here $IFGSO(X) = \{0_{\sim}, A, 1_{\sim}\}$ where $0_{\sim} \subset A \subset 1_{\sim}$ and $IFG'''C(X) = \{0_{\sim}, G^c, 1_{\sim}\}$. Consider an IFS $A = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$. Then A is an IFG'''CS in (X, τ) .

Example 3.3. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2$, $\mu_G(b) = 0.3$, $\nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Here $IFGSO(X) = \{0_{\sim}, A, 1_{\sim}\}$ where $0_{\sim} \subset A \subset 1_{\sim}$ and $IFG'''C(X) = \{0_{\sim}, G^c, 1_{\sim}\}$. Consider an IFS $A = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Then A is not an IFG'''CS in (X, τ) .

Theorem 3.4. Every IFCS is an IFG^{'''}CS.

Proof. Let A be an IFCS in (X, τ) . Let $U \in IFGSO(X)$ such that $A \subseteq U$. Since A is an IFCS, cl(A) = A. Thus we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and $U \in IFGSO(X)$. Therefore A is an IFG'''CS in (X, τ) . Hence every IFCS is an IFG'''CS. \Box

The converse of Theorem 3.4 need not be true as seen from the following Example.

Example 3.5. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$. We have $\mu_G(a) = 0.7, \mu_G(b) = 0.6, \nu_G(a) = 0.2$ and $\nu_G(b) = 0.3$. Here $IFGSO(X) = \{0_{\sim}, A, G, B, 1_{\sim}\}$ where $0_{\sim} \subset A \subset G^c$ and $G \subset B \subset 1_{\sim}$ and $IFG'''C(X) = \{0_{\sim}, A, G^c, 1_{\sim}\}$ where $0_{\sim} \subset A \subset G^c$. Consider an IFS $A = \langle x, (0.1, 0.2), (0.8, 0.7) \rangle$. Then the IFS A is an IFG'''CS but not an IFCS in (X, τ) .

Theorem 3.6. Every IFG^{'''}CS is an IFGSPCS.

Proof. Let $A \subseteq U$ where U is an IFOS in (X, τ) . Since every IFOS is an IFGSOS and since A is an IFG^{'''}CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and $U \in IFGSO(X)$. We have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFOS in (X, τ) . Since $spcl(A) \subseteq cl(A)$, we have $spcl(A) \subseteq U$. Therefore A is an IFGSPCS in (X, τ) . Hence every IFG^{'''}CS is an IFGSPCS.

The converse of Theorem 3.6 need not be true as seen from the following Example.

Example 3.7. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2, \mu_G(b) = 0.3, \nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Here IFG^{'''}C(X) $= \{0_{\sim}, G^c, 1_{\sim}\}$. Therefore A is not an IFG^{'''}CS in (X, τ) . And we have spcl(A) = A. Therefore A is an IFGSPCS in (X, τ) .

Theorem 3.8. Every IFG'''CS is an $IF\omega CS$.

Proof. Let $A \subseteq U$ where U is an IFSOS in (X, τ) . Since every IFSOS is an IFGSOS and since A is an IFG^{'''}CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . We have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . Therefore A is an IF ω CS in (X, τ) . Hence every IFG^{'''}CS is an IF ω CS.

The converse of Theorem 3.8 need not be true as seen from the following Example.

Example 3.9. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_G(a) = 0.3, \mu_G(b) = 0.4, \nu_G(a) = 0.6$ and $\nu_G(b) = 0.5$. Consider an IFS $A = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$. Here $IFG'''C(X) = \{0_{\sim}, G^c, 1_{\sim}\}$. Therefore A is not an IFG'''CS in (X, τ) . And here $IFSO(X) = \{0_{\sim}, G, A, G^c, 1_{\sim}\}$ where $G \subset A \subset G^c$. Therefore A is an $IF\omega CS$ in (X, τ) .

Theorem 3.10. Every IFG^{'''}CS is an IFGCS.

Proof. Let $A \subseteq U$ where U is an IFOS in (X, τ) . Since every IFOS is an IFGSOS and since A is an IFG^{'''}CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . We have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . Therefore A is an IFGCS in (X, τ) . Hence every IFG^{'''}CS is an IFGCS.

The converse of Theorem 3.10 need not be true as seen from the following Example.

Example 3.11. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. We have $\mu_G(a) = 0.6, \mu_G(b) = 0.5, \nu_G(a) = 0.3$ and $\nu_G(b) = 0.4$. Consider an IFS $A = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$. Here IFG''' $C(X) = \{0_{\sim}, A, G^c, 1_{\sim}\}$ where $0_{\sim} \subset A \subset G^c$. Therefore A is not an IFG''' CS in (X, τ) . And here $U = 1_{\sim}$ is the only IFOS which contains A. Therefore A is an IFGCS in (X, τ) .

Theorem 3.12. Every IFG'''CS is an $IF\alpha GCS$.

Proof. Let $A \subseteq U$ where U is an IFOS in (X, τ) . Since every IFOS is an IFGSOS and since A is an IFG^{'''}CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . We have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFOS in (X, τ) . Since $\alpha cl(A) \subseteq cl(A)$, we have $\alpha cl(A) \subseteq U$. Therefore A is an IF α GCS in (X, τ) . Hence every IFG^{'''}CS is an IF α GCS.

The converse of Theorem 3.12 need not be true as seen from the following Example.

Example 3.13. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. We have $\mu_G(a) = 0.6, \mu_G(b) = 0.7, \nu_G(a) = 0.3$ and $\nu_G(b) = 0.2$. Consider an IFS $A = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. Here IFG''' $C(X) = \{0_{\sim}, A, G^c, 1_{\sim}\}$ where $0_{\sim} \subset A \subset G^c$. Therefore A is not an IFG''' CS in (X, τ) . And here $U = 1_{\sim}$ is the only IFOS which contains A. Therefore A is an IF αGCS in (X, τ) .

Theorem 3.14. Every IFG^{'''}CS is an IFGSCS.

Proof. Let $A \subseteq U$ where U is an IFOS in (X, τ) . Since every IFOS is an IFGSOS and since A is an IFG^{'''}CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . We have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . Since $scl(A) \subseteq cl(A)$, we have $scl(A) \subseteq U$. Therefore A is an IFGSCS in (X, τ) . Hence every IFG^{'''}CS is an IFGSCS.

The converse of Theorem 3.14 need not be true as seen from the following Example.

Example 3.15. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2, \mu_G(b) = 0.3, \nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. Here IFG''' $C(X) = \{0_{\sim}, G^c, 1_{\sim}\}$. Therefore A is not an IFG''' CS in (X, τ) . And here $U = 1_{\sim}$ is the only IFOS which contains A. Therefore A is an IFGSCS in (X, τ) .

Definition 3.16. An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy g_s''' -closed set $(IFG_s'''CS \text{ in short})$ if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . The complement of an intuitionistic fuzzy g_s''' -closed set is called an intuitionistic fuzzy g_s''' -open set $(IFG_s'''OS \text{ in short})$.

Theorem 3.17. Every IFG'''CS is an IFG'''_SCS .

Proof. Let $A \subseteq U$ where U is an IFGSOS in (X, τ) . Since A is an IFG^{'''}CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . Since $scl(A) \subseteq cl(A)$, we have $scl(A) \subseteq U$. Therefore A is an IFG^{'''}_SCS in (X, τ) . Hence every IFG^{'''}CS is an IFG^{'''}_SCS.

The converse of Theorem 3.17 need not be true as seen from the following Example.

Example 3.18. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2, \mu_G(b) = 0.3, \nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Here $IFG'''C(X) = \{0_{\sim}, G^c, 1_{\sim}\}$. Therefore A is not an IFG'''CS in (X, τ) . And here $IFSC(X) = \{0_{\sim}, G, A, G^c, 1_{\sim}\}$ where $G \subset A \subset G^c$. Therefore A is an IFG'''CS in (X, τ) .

Theorem 3.19. Every IFG'''CS is an $IF\alpha GSCS$.

Proof. Let $A \subseteq U$ where U is an IFSOS in (X, τ) . Since every IFSOS is an IFGSOS and since A is an IFG^{'''}CS in (X, τ) , we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . We have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . We have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFSOS in (X, τ) . Since $acl(A) \subseteq cl(A)$, we have $acl(A) \subseteq U$. Therefore A is an IFaGSCS in (X, τ) . Hence every IFG^{'''}CS is an IFaGSCS.

The converse of Theorem 3.19 need not be true as seen from the following Example.

Example 3.20. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.3), (0.5, 0.6) \rangle$. We have $\mu_G(a) = 0.4$, $\mu_G(b) = 0.3$, $\nu_G(a) = 0.5$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. Here $IFG'''C(X) = \{0_{\sim}, G^c, 1_{\sim}\}$. Therefore A is not an IFG'''CS in (X, τ) . And here $IFSO(X) = \{0_{\sim}, G, A, G^c, 1_{\sim}\}$ where $G \subset A \subset G^c$. Therefore A is an $IF\alpha GSCS$ in (X, τ) .

Definition 3.21. An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy g''_{α} -closed set $(IFG''_{\alpha}CS \text{ in short})$ if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . The complement of an intuitionistic fuzzy g''_{α} -closed set is called an intuitionistic fuzzy g''_{α} -open set $(IFG''_{\alpha}OS \text{ in short})$.

Theorem 3.22. Every IFG^{'''}CS is an IFG^{'''}_{α}CS.

Proof. Let A be an IFG^{'''}CS in (X, τ) . Then we have $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . Since $\alpha cl(A) \subseteq cl(A)$, we have $\alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is an IFGSOS in (X, τ) . Therefore A is an IFG^{'''}_{\alpha}CS in (X, τ) . Hence every IFG^{'''}CS is an IFG^{'''}_{\alpha}CS.

The converse of Theorem 3.22 need not be true as seen from the following Example.

Example 3.23. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.6), (0.6, 0.3) \rangle$. We have $\mu_G(a) = 0.3, \mu_G(b) = 0.6, \nu_G(a) = 0.6$ and $\nu_G(b) = 0.3$. Consider an IFS $A = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. Then A is an $IFG_{\alpha}^{\prime\prime\prime}CS$ but not an $IFG^{\prime\prime\prime}CS$ in (X, τ) .

Remark 3.24. IF α CS and IFG'''CS are independent.

Example 3.25. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$. We have $\mu_G(a) = 0.2, \mu_G(b) = 0.3, \nu_G(a) = 0.8$ and $\nu_G(b) = 0.7$. Consider an IFS $A = \langle x, (0.1, 0.4), (0.9, 0.6) \rangle$. Then A is an IF α CS but not an IFG^{'''}CS in (X, τ) .

Example 3.26. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_{G_1}(a) = 0.3$, $\mu_{G_1}(b) = 0.2$, $\nu_{G_1}(a) = 0.6$, $\nu_{G_1}(b) = 0.7$, $\mu_{G_2}(a) = 0.3$, $\mu_{G_2}(b) = 0.4$, $\nu_{G_2}(a) = 0.6$ and $\nu_{G_2}(b) = 0.5$. Consider an IFS $A = \langle x, (0.65, 0.75), (0.25, 0.15) \rangle$. Then A is an IFG''' CS but not an IF α CS in (X, τ) .

Remark 3.27. IFSCS and IFG'''CS are independent.

Example 3.28. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_G(a) = 0.3, \mu_G(b) = 0.4, \nu_G(a) = 0.6$ and $\nu_G(b) = 0.5$. Consider an IFS $A = \langle x, (0.4, 0.5), (0.5, 0.4) \rangle$. Then A is an IFSCS but not an IFG^{'''}CS in (X, τ) .

Example 3.29. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_{G_1}(a) = 0.2, \mu_{G_1}(b) = 0.3, \nu_{G_1}(a) = 0.7, \nu_{G_1}(b) = 0.6, \mu_{G_2}(a) = 0.3, \mu_{G_2}(b) = 0.4, \nu_{G_2}(a) = 0.6$ and $\nu_{G_2}(b) = 0.5$. Consider an IFS $A = \langle x, (0.8, 0.7), (0.1, 0.2) \rangle$. Then A is an IFG''' CS but not an IFSCS in (X, τ) .

Theorem 3.30. If A and B are IFG''' CSs in an IFTS (X, τ) , then $A \cup B$ is also an IFG''' CS in (X, τ) .

Proof. If A ∪ B ⊆ G where G is IFGSOS, then A ⊆ G and B ⊆ G. Since A and B are IFG^{'''}CSs, cl(A) ⊆ G and cl(B) ⊆ G and hence cl(A) ∪ cl(B) = cl(A ∪ B) ⊆ G. Thus A ∪ B is an IFG^{'''}CS in (X, τ).

Remark 3.31. The intersection of two IFG'''CSs in an IFTS (X, τ) need not be an IFG'''CS in (X, τ) .

Example 3.32. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_{G_1}(a) = 0.2, \mu_{G_1}(b) = 0.3, \nu_{G_1}(a) = 0.7, \nu_{G_1}(b) = 0.6, \mu_{G_2}(a) = 0.3, \mu_{G_2}(b) = 0.4, \nu_{G_2}(a) = 0.6$ and $\nu_{G_2}(b) = 0.5$. Consider the two IFSs $A = \langle x, (0.1, 0.7), (0.8, 0.2) \rangle$ and $B = \langle x, (0.8, 0.2), (0.1, 0.7) \rangle$. Then A and B are IFG'''CSs. But $A \cap B = \langle x, (0.1, 0.2), (0.8, 0.7) \rangle$ is not an IFG'''CS in (X, τ) .

Theorem 3.33. If A is an IFG''' CS in an IFTS (X, τ) and $A \subseteq B \subseteq cl(A)$, then B is an IFG''' CS in (X, τ) .

Proof. Let $B \subseteq U$ where U is an IFGSOS in (X, τ) . Since $A \subseteq B$, $A \subseteq U$. Since A is an IFG'''CS in (X, τ) , $cl(A) \subseteq U$. Since $B \subseteq cl(A)$, $cl(B) \subseteq cl(A) \subseteq U$. Therefore B is an IFG'''CS in (X, τ) .

Theorem 3.34. Let A be an IFS in an IFTS (X, τ) . Then A is an IFG^{'''}CS if and only if $A\bar{q}F$ implies $cl(A)\bar{q}F$ for every IFGSCS F in (X, τ) .

Proof. Necessary Part: Let F be an IFGSCS in (X, τ) and let $A\bar{q}F$. Then $A \subseteq F^c$, where F^c is an IFGSOS in (X, τ) . Therefore by hypothesis $cl(A) \subseteq F^c$. Hence $cl(A)\bar{q}F$.

Sufficient Part: Let F be an IFGSCS in (X, τ) and let A be an IFS in (X, τ) . By hypothesis, A \bar{q} F implies cl(A) \bar{q} F. Then cl(A) \subseteq F^c whenever A \subseteq F^c and F^c is an IFGSOS in (X, τ) . Hence A is an IFG'''CS in (X, τ) .

Theorem 3.35. Let (X, τ) be an IFTS. Then IFC(X) = IFG'''C(X) if every IFS in (X, τ) is an IFGSOS in X, where IFC(X) denotes the collection of IFCSs of an IFTS (X, τ) .

Proof. Suppose that every IFS in (X, τ) is an IFGSOS in X. Let A ∈ IFG^{'''}C(X). Then cl(A) ⊆ U whenever A ⊆ U and U is an IFGSOS in X. Since every IFS is an IFGSOS, A is also an IFGSOS and A ⊆ A. Therefore cl(A) ⊆ A. Hence cl(A) = A. Therefore A ∈ IFC(X). Hence IFG^{'''}C(X) ⊆ IFC(X) → (1). Let A ∈ IFC(X). Then by Theorem 3.4, A ∈ IFG^{'''}C(X). Hence IFC(X) ⊆ IFG^{'''}C(X) → (2). From (1) and (2), we have IFC(X) = IFG^{'''}C(X).

Proposition 3.36. If A is an IFGSOS and IFG'''CS in an IFTS (X, τ) , then A is an IFCS in (X, τ) .

Proof. Since A is an IFGSOS and IFG^{'''}CS, $cl(A) \subseteq A$. Hence A is an IFCS in (X, τ) .

4. Intuitionistic Fuzzy g'''-open Sets

In this section we introduce intuitionistic fuzzy g'''-open sets and study some of its properties.

Definition 4.1. An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy g'''-open set (IFG''' OS in short) if A^c is an intuitionistic fuzzy g'''-closed set in (X, τ) . The collection of all intuitionistic fuzzy g'''-open sets in X is denoted by IFG''' O(X).

Example 4.2. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2$, $\mu_G(b) = 0.3$, $\nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. Then by Example 3.2, A^c is an IFG^{'''}CS in (X, τ) . Hence A is an IFG^{'''}OS in (X, τ) .

Example 4.3. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2$, $\mu_G(b) = 0.3$, $\nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Then by Example 3.3, A^c is not an IFG^{'''}CS in (X, τ) . Hence A is not an IFG^{'''}OS in (X, τ) .

Theorem 4.4. An IFS A in an IFTS (X, τ) is IFG^{'''}OS if and only if $F \subseteq int(A)$ whenever $F \subseteq A$ and F^c is an IFGSOS.

Proof. Necessary Part: Let A be an IFG^{'''}OS in (X, τ) . Let F^c be an IFGSOS such that $F \subseteq A$. Then $A^c \subseteq F^c$ where A^c is an IFG^{'''}CS. Hence $cl(A^c) \subseteq F^c$. This implies $(int(A))^c \subseteq F^c$. Thus we have $F \subseteq int(A)$ whenever $F \subseteq A$ and F^c is an IFGSOS.

Sufficient Part: Let $F \subseteq int(A)$ whenever $F \subseteq A$ and F^c is an IFGSOS in (X, τ) . This implies $(int(A))^c \subseteq F^c$ whenever $A^c \subseteq F^c$ and F^c is an IFGSOS. That is $cl(A^c) \subseteq F^c$ whenever $A^c \subseteq F^c$ and F^c is an IFGSOS. Therefore A^c is an IFG'''CS. Hence A is an IFG'''OS in (X, τ) .

Theorem 4.5. Every IFOS is an IFG^{'''}OS.

Proof. Let A be an IFOS in (X, τ) . Therefore A^c is an IFCS in (X, τ) . Then by Theorem 3.4, A^c is an IFG^{'''}CS in (X, τ) . τ). Therefore A is an IFG^{'''}OS in (X, τ) .

The converse of Theorem 4.5 need not be true as seen from the following Example.

Example 4.6. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$. We have $\mu_G(a) = 0.7$, $\mu_G(b) = 0.6$, $\nu_G(a) = 0.2$ and $\nu_G(b) = 0.3$. Consider an IFS $A = \langle x, (0.8, 0.7), (0.1, 0.2) \rangle$. Then by Example 3.5, A^c is an IFG^{'''}CS but not an IFCS in (X, τ) . Hence A is an IFG^{'''}OS but not an IFOS in (X, τ) .

Theorem 4.7. Every IFG^{'''}OS is an IFGSPOS.

Proof. Let A be an IFG^{'''}OS in (X, τ) . Therefore A^c is an IFG^{'''}CS in (X, τ) . Then by Theorem 3.6, A^c is an IFGSPCS in (X, τ) . Therefore A is an IFGSPOS in (X, τ) .

The converse of Theorem 4.7 need not be true as seen from the following Example.

Example 4.8. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2$, $\mu_G(b) = 0.3$, $\nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Then by Example 3.7, A^c is an IFGSPCS but not an IFG''' CS in (X, τ) . Hence A is an IFGSPOS but not an IFG''' OS in (X, τ) .

Theorem 4.9. Every IFG'''OS is an $IF\omega OS$.

Proof. Let A be an IFG^{'''}OS in (X, τ) . Therefore A^c is an IFG^{'''}CS in (X, τ) . Then by Theorem 3.8, A^c is an IF ω CS in (X, τ) . Therefore A is an IF ω OS in (X, τ) .

The converse of Theorem 4.9 need not be true as seen from the following Example.

Example 4.10. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_G(a) = 0.3, \mu_G(b) = 0.4, \nu_G(a) = 0.6$ and $\nu_G(b) = 0.5$. Consider an IFS $A = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. Then by Example 3.9, A^c is an IF ω CS but not an IFG'''CS in (X, τ) . Hence A is an IF ω OS but not an IFG'''OS in (X, τ) .

Theorem 4.11. Every IFG'''OS is an IFGOS.

Proof. Let A be an IFG^{'''}OS in (X, τ) . Therefore A^c is an IFG^{'''}CS in (X, τ) . Then by Theorem 3.10, A^c is an IFGCS in (X, τ) . Therefore A is an IFGOS in (X, τ) .

The converse of Theorem 4.11 need not be true as seen from the following Example.

Example 4.12. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. We have $\mu_G(a) = 0.6, \mu_G(b) = 0.5, \nu_G(a) = 0.3$ and $\nu_G(b) = 0.4$. Consider an IFS $A = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. Then by Example 3.11, A^c is an IFGCS but not an IFG^{'''}CS in (X, τ) . Hence A is an IFGOS but not an IFG^{'''}OS in (X, τ) .

Theorem 4.13. Every IFG'''OS is an $IF\alpha GOS$.

Proof. Let A be an IFG^{'''}OS in (X, τ) . Therefore A^c is an IFG^{'''}CS in (X, τ) . Then by Theorem 3.12, A^c is an IF α GCS in (X, τ) . Therefore A is an IF α GOS in (X, τ) .

The converse of Theorem 4.13 need not be true as seen from the following Example.

Example 4.14. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.7), (0.3, 0.2) \rangle$. We have $\mu_G(a) = 0.6, \mu_G(b) = 0.7, \nu_G(a) = 0.3$ and $\nu_G(b) = 0.2$. Consider an IFS $A = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Then by Example 3.13, A^c is an IF α GCS but not an IFG'''CS in (X, τ) . Hence A is an IF α GOS but not an IFG'''OS in (X, τ) .

Theorem 4.15. Every IFG^{'''}OS is an IFGSOS.

Proof. Let A be an IFG^{'''}OS in (X, τ) . Therefore A^c is an IFG^{'''}CS in (X, τ) . Then by Theorem 3.14, A^c is an IFGSCS in (X, τ) . Therefore A is an IFGSOS in (X, τ) .

The converse of Theorem 4.15 need not be true as seen from the following Example.

Example 4.16. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2, \mu_G(b) = 0.3, \nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Then by Example 3.15, A^c is an IFGSCS but not an IFG^{'''}CS in (X, τ) . Hence A is an IFGSOS but not an IFG^{'''}OS in (X, τ) .

Theorem 4.17. Every IFG'''OS is an IFG'''_SOS .

Proof. Let A be an IFG^{'''}OS in (X, τ) . Therefore A^c is an IFG^{'''}CS in (X, τ) . Then by Theorem 3.17, A^c is an IFG^{'''}_SCS in (X, τ) . Therefore A is an IFG^{'''}_SOS in (X, τ) .

The converse of Theorem 4.17 need not be true as seen from the following Example.

Example 4.18. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. We have $\mu_G(a) = 0.2, \mu_G(b) = 0.3, \nu_G(a) = 0.7$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Then by Example 3.18, A^c is an IFG^{'''}_S CS but not an IFG^{'''} CS in (X, τ) . Hence A is an IFG^{'''}_S OS but not an IFG^{'''} OS in (X, τ) .

Theorem 4.19. Every IFG'''OS is an $IF\alpha GSOS$.

Proof. Let A be an IFG^{'''}OS in (X, τ) . Therefore A^c is an IFG^{'''}CS in (X, τ) . Then by Theorem 3.19, A^c is an IF α GSCS in (X, τ) . Therefore A is an IF α GSOS in (X, τ) .

The converse of Theorem 4.19 need not be true as seen from the following Example.

Example 4.20. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.3), (0.5, 0.6) \rangle$. We have $\mu_G(a) = 0.4, \mu_G(b) = 0.3, \nu_G(a) = 0.5$ and $\nu_G(b) = 0.6$. Consider an IFS $A = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Then by Example 3.20, A^c is an IF α GSCS but not an IFG'''CS in (X, τ) . Hence A is an IF α GSOS but not an IFG'''OS in (X, τ) .

Theorem 4.21. Every IFG''' OS is an IFG''' OS.

Proof. Let A be an IFG^{'''}OS in (X, τ) . Therefore A^c is an IFG^{'''}CS in (X, τ) . Then by Theorem 3.22, A^c is an IFG^{'''}_{\alpha}CS in (X, τ) . Therefore A is an IFG^{'''}_{\alpha}OS in (X, τ) .

The converse of Theorem 4.21 need not be true as seen from the following Example.

Example 4.22. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.6), (0.6, 0.3) \rangle$. We have $\mu_G(a) = 0.3, \mu_G(b) = 0.6, \nu_G(a) = 0.6$ and $\nu_G(b) = 0.3$. Consider an IFS $A = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$. Then A is an $IFG^{\prime\prime\prime}_{\alpha}OS$ but not an $IFG^{\prime\prime\prime}_{\alpha}OS$ in (X, τ) .

Remark 4.23. IF αOS and IFG''' OS are independent.

Example 4.24. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$. We have $\mu_G(a) = 0.2, \mu_G(b) = 0.3, \nu_G(a) = 0.8$ and $\nu_G(b) = 0.7$. Consider an IFS $A = \langle x, (0.9, 0.6), (0.1, 0.4) \rangle$. Then A is an IF α OS but not an IFG^{'''}OS in (X, τ) .

Example 4.25. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_{G_1}(a) = 0.3, \mu_{G_1}(b) = 0.2, \nu_{G_1}(a) = 0.6, \nu_{G_1}(b) = 0.7, \mu_{G_2}(a) = 0.3, \mu_{G_2}(b) = 0.4, \nu_{G_2}(a) = 0.6$ and $\nu_{G_2}(b) = 0.5$. Consider an IFS $A = \langle x, (0.25, 0.15), (0.65, 0.75) \rangle$. Then A is an IFG''' OS but not an IF α OS in (X, τ) .

Remark 4.26. IFSOS and IFG" OS are independent.

Example 4.27. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_G(a) = 0.3, \mu_G(b) = 0.4, \nu_G(a) = 0.6$ and $\nu_G(b) = 0.5$. Consider an IFS $A = \langle x, (0.5, 0.4), (0.4, 0.5) \rangle$. Then A is an IFSOS but not an IFG''' OS in (X, τ) .

Example 4.28. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_{G_1}(a) = 0.2$, $\mu_{G_1}(b) = 0.3$, $\nu_{G_1}(a) = 0.7$, $\nu_{G_1}(b) = 0.6$, $\mu_{G_2}(a) = 0.3$, $\mu_{G_2}(b) = 0.4$, $\nu_{G_2}(a) = 0.6$ and $\nu_{G_2}(b) = 0.5$. Consider an IFS $A = \langle x, (0.1, 0.2), (0.8, 0.7) \rangle$. Then A is an IFG''' OS but not an IFSOS in (X, τ) .

Theorem 4.29. If A and B are IFG''' OSs in an IFTS (X, τ) , then $A \cap B$ is also an IFG''' OS in (X, τ) .

Proof. Let A and B be IFG'''OSs in (X, τ) . Therefore A^c and B^c are IFG'''CSs in (X, τ) . By Theorem 3.30, $(A^c \cup B^c)$ is an IFG'''CS in (X, τ) . Since $(A^c \cup B^c) = (A \cap B)^c$, $A \cap B$ is an IFG'''OS in (X, τ) .

Remark 4.30. The union of two IFG^{'''}OSs in an IFTS (X, τ) need not be an IFG^{'''}OS in (X, τ) .

Example 4.31. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. We have $\mu_{G_1}(a) = 0.2, \mu_{G_1}(b) = 0.3, \nu_{G_1}(a) = 0.7, \nu_{G_1}(b) = 0.6, \mu_{G_2}(a) = 0.3, \mu_{G_2}(b) = 0.4, \nu_{G_2}(a) = 0.6$ and $\nu_{G_2}(b) = 0.5$. Consider the two IFSs $A = \langle x, (0.1, 0.7), (0.8, 0.2) \rangle$ and $B = \langle x, (0.8, 0.2), (0.1, 0.7) \rangle$. Then A and B are IFG'''OSs. But $A \cup B = \langle x, (0.8, 0.7), (0.1, 0.2) \rangle$ is not an IFG'''OS in (X, τ) .

Theorem 4.32. If A is an IFG^{'''}OS in an IFTS (X, τ) such that $int(A) \subseteq B \subseteq A$, then B is IFG^{'''}OS in (X, τ) .

Proof. Let A be an IFG^{'''}OS in (X, τ) such that $int(A) \subseteq B \subseteq A$. It implies $A^c \subseteq B^c \subseteq cl(A^c)$ where A^c is an IFG^{'''}CS in (X, τ) . By Theorem 3.33, B^c is an IFG^{'''}CS in (X, τ) . Therefore B is an IFG^{'''}OS in (X, τ) .

Theorem 4.33. Let (X, τ) be an IFTS. Then IFO(X) = IFG'''O(X) if every IFS in (X, τ) is an IFGSOS in X, where IFO(X) denotes the collection of IFOSs of an IFTS (X, τ) .

Proof. Suppose that every IFS in (X, τ) is an IFGSOS in X. Then by Theorem 3.35, we have IFC(X) = IFG'''C(X). Therefore IFO(X) = IFG'''O(X).

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20(1986), 87-96, doi: 10.1016/S0165-0114(86)80034-3.
- [2] K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, Jour. Math. Anal. Appl., 82(1981), 14-32.
- [3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and Systems, 88(1997), 81-89, doi: 10.1016/S0165-0114(96)00076-0.
- [4] H. Gurcay, D. Coker and Es. A. Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 5(1997), 365-378.
- [5] K. Hur and Y. B. Jun, On intuitionistic fuzzy alpha continuous mappings, Honam Math. J., 25(2003), 131-139.
- [6] M. Jeyaraman, A. Yuvarani and O. Ravi, Intuitionistic fuzzy α-generalized semi continuous and irresolute mappings, International Journal of Analysis and Applications, 3(2)(2013), 93-103.
- [7] Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, Int. J. Mathematics and Mathematical Sciences, 19(2005), 3091-3101, doi: 10.1155/IJMMS.2005.3091.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96, doi: 10.1007/BF02843888.
- [9] P. Rajarajeswari and R. Krishna Moorthy, Intuitionistic fuzzy weakly generalized closed mappings, Journal of Advanced Studies in Topology, 4(2012), 20-27.
- [10] K. Sakthivel, Intuitionistic fuzzy alpha generalized continuous mappings and intuitionistic fuzzy alpha generalized irresolute mappings, Applied Mathematics Sciences, 4(2010), 1831-1842.
- [11] R. Santhi and D. Jayanthi, Intuitionistic fuzzy generalized semipreclosed mappings, NIFS, 16(2010), 28-39.
- [12] R. Santhi and K. Sakthivel, Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.
- [13] R. Santhi and K. Arun Prakash, On intuitionistic fuzzy semi generalized closed sets and its applications, Int. J. Contemp. Math. Sci., 5(2010), 1677-1688.
- [14] S. S. Thakur and Jyoti Pandey Bajpai, Intuitionistic fuzzy w-closed sets and intuitionistic fuzzy w-continuity, International Journal of Contemporary Advanced Mathematics, 1(2010), 1-15.

- [15] S. S. Thakur and Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(2008), 559-572.
- [16] S. S. Thakur and Rekha Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau Studii Si Cercetar Stiintifice, 6(2006), 257-272.
- [17] Young Bae Jun and Seok-Zun Song, Intuitionistic fuzzy semi preopen sets and Intuitionistic semi pre continuous mappings, J. Appl. Math. & Computing, 19(2005), 467-474.
- [18] L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353, doi: 10.1016/S0019-9958 (65)90241-X.