

International Journal of Current Research in Science and Technology

$$\mathcal{I}_{mg^{\#}} extsf{-closed Sets}$$

Research Article

O.Ravi^{1*}, K.Indirani² and A.R.Thilagavathi³

- 1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.
- 3 Department of Mathematics, Sri G. V. G Visalatkshi College for Women, Udumalpet, Thirupur District, Tamil Nadu, India.
- Abstract: In this paper, we introduce the notion of $\mathcal{I}_{mg\#}$ -closed sets. In Sections 3 and 4, we obtain some basic properties and characterizations of $\mathcal{I}_{mg\#}$ -closed sets. In the last section, we define several new subsets in ideal topological spaces which lie between \star -closed sets and $\mathcal{I}_{g^{\star}}$ -closed sets.

MSC: 54C05, 54C08, 54C10.

Keywords: $\mathcal{I}_{g^{\star}}$ -closed set, $\mathcal{I}_{mg^{\#}}$ -closed set, g^{\star} -closed set, mg^{\star} -open set. © JS Publication.

1. Introduction

In 1970, Levine [6] introduced the notion of generalized closed (briefly g-closed) sets in topological spaces. Veerakumar [18] introduced the notion of g^* -closed sets in topological spaces. Recently, many variations or generalizations of g-closed sets [1, 2, 7, 12] and g^* -closed sets [3, 9, 15–17] are introduced and investigated. By combining a topological space (X, τ) and an ideal \mathcal{I} on (X, τ), Ravi et al. [14] introduced the notion of \mathcal{I}_{g^*} -closed sets and investigated the properties of \mathcal{I}_{g^*} -closed sets. In this paper, we introduce the notion of $\mathcal{I}_{mg^{\#}}$ -closed sets. In Sections 3 and 4, we obtain some basic properties and characterizations of $\mathcal{I}_{mg^{\#}}$ -closed sets. In the last section, we define several new subsets in ideal topological spaces which lie between *-closed sets and \mathcal{I}_{q^*} -closed sets.

2. Preliminaries

Definition 2.1 ([13]). A subfamily $m_X \subseteq \wp(X)$ is said to be a minimal structure (briefly, m-structure) on X if \emptyset , $X \in m_X$. The pair (X, m_X) is called a minimal space (briefly m-space). Each member of m_X is said to be m-open and the complement of an m-open set is said to be m-closed.

Notice that (X, m_X, \mathcal{I}) is called an ideal m-space.

Remark 2.2. Let (X, τ) be a topological space. Then $m_X = \tau$, SO(X) and SPO(X) are minimal structures on X.

Definition 2.3. Let (X, m_X) be an m-space. For a subset A of X, the m-closure of A and the m-interior of A are defined in [8] as follows:

^{*} E-mail: siingam@yahoo.com

- (1). $m\text{-}cl(A) = \cap \{F : A \subseteq F, F^c \in m_X\}$,
- (2). m-int $(A) = \cup \{ U : U \subseteq A, U \in m_X \}.$

Lemma 2.4 ([5]). Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then the following properties hold:

- (1). $A \subseteq B \Rightarrow A^* \subseteq B^*$,
- (2). $A^* = cl(A^*) \subseteq cl(A),$
- (3). $(A^{\star})^{\star} \subseteq A^{\star}$,
- (4). $(A \cup B)^* = A^* \cup B^*$,
- (5). $(A \cap B)^* \subseteq A^* \cap B^*$.

Theorem 2.5 ([14]). Let (X, τ, \mathcal{I}) be an ideal topological space. Then every g^* -closed set is an \mathcal{I}_{g^*} -closed set but not conversely.

Definition 2.6 ([10]). Let (X, τ) be a topological space and m_X an m-structure on X. A subset A of X is said to be

- (1). mg^* -closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in m_X$,
- (2). mg^* -open if its complement is mg^* -closed.

The family of all mg^* -open sets in X is an m-structure on X and it is denoted by $mg^*O(X)$.

3. $\mathcal{I}_{mq^{\#}}$ -closed Sets

In this section, let (X, τ, \mathcal{I}) be an ideal topological space and m_X an m-structure on X. We obtain several basic properties of $\mathcal{I}_{mg\#}$ -closed sets.

Definition 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space and m_X an m-structure on X. A subset A of X is said to be

(1). $\mathcal{I}_{ma^{\#}}$ -closed if $A^{\star} \subseteq U$ whenever $A \subseteq U$ and U is mg^{\star} -open,

(2). $\mathcal{I}_{mq^{\#}}$ -open if its complement is $\mathcal{I}_{mq^{\#}}$ -closed.

Remark 3.2. Let (X, τ, \mathcal{I}) be an ideal topological space and A a subset of X. If $mg^*O(X) = gO(X)$ (resp. $\tau, \pi O(X), RO(X)$) and A is $\mathcal{I}_{mg^{\#}}$ -closed, then A is said to be \mathcal{I}_{g^*} -closed (resp. \mathcal{I}_g -closed, $\mathcal{I}_{\pi g}$ -closed).

Proposition 3.3. Every $mg^{\#}$ -closed set is $\mathcal{I}_{mg^{\#}}$ -closed but not conversely.

Proof. Let A be an $mg^{\#}$ -closed, then $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is mg^{*} -open. By Lemma 2.4, $A^{*} \subseteq cl(A)$. Hence A is $\mathcal{I}_{mg^{\#}}$ -closed.

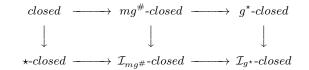
Example 3.4. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b\}, \{a, c\}\}, \mathcal{I} = \{\phi, \{c\}\} and m_X = \{\phi, X, \{c\}\}.$ Then $mg^{\#}$ -closed sets are $\phi, X, \{b\}, \{a, b\}$ and $\{a, c\}$; and $\mathcal{I}_{mg^{\#}}$ -closed sets are $\phi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}$ and $\{b, c\}$. It is clear that $\{c\}$ is $\mathcal{I}_{mg^{\#}}$ -closed set but it is not $mg^{\#}$ -closed.

Proposition 3.5. Let $gO(X) \subseteq mg^*O(X)$. Then every $\mathcal{I}_{mg^{\#}}$ -closed set is \mathcal{I}_{g^*} -closed but not conversely.

Proof. Suppose that A is an $\mathcal{I}_{mg^{\#}}$ -closed set. Let A \subseteq U and U \in gO(X). Since gO(X) \subseteq mg^{*}O(X), A^{*} \subseteq U and hence A is \mathcal{I}_{g^*} -closed.

Example 3.6. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{c\}, \{b, c\}\}, \mathcal{I} = \{\phi, \{a\}\}$ and $m_X = \{\phi, X\}$. Then mg^* -open sets are the power set of X; g-open sets are ϕ , X, $\{b\}, \{c\}$ and $\{b, c\}; \mathcal{I}_{mg^{\#}}$ -closed sets are ϕ , X, $\{a\}$ and $\{a, b\};$ and \mathcal{I}_{g^*} -closed sets are ϕ , X, $\{a\}$ and $\{a, c\}$. It is clear that $\{a, c\}$ is \mathcal{I}_{g^*} -closed set but it is not $\mathcal{I}_{mg^{\#}}$ -closed.

Remark 3.7. Let $gO(X) \subseteq mg^*O(X)$. Then we have the following implications for the subsets stated above.



The implications in the first line are known in [11]. The three vertical implications follow from Proposition 3.3, Theorem 2.5 and Lemma 2.4(2). It is obvious that every \star -closed set is $\mathcal{I}_{mg\#}$ -closed and by Proposition 3.5, every $\mathcal{I}_{mg\#}$ -closed set is $\mathcal{I}_{g\star}$ -closed.

Lemma 3.8 ([4]). Let $\{A_{\lambda} : \lambda \in \wedge\}$ be a locally finite family of sets in (X, τ, \mathcal{I}) . Then $\bigcup_{\lambda \in \wedge} A_{\lambda}^{\star} = (\bigcup_{\lambda \in \wedge} A_{\lambda})^{\star}$.

Proposition 3.9. If $\{A_{\lambda} : \lambda \in \wedge\}$ is a locally finite family of sets in (X, τ, \mathcal{I}) and A_{λ} is $\mathcal{I}_{mg^{\#}}$ -closed for each $\lambda \in \wedge$, then $(\bigcup_{\lambda \in \wedge} A_{\lambda})$ is $\mathcal{I}_{mg^{\#}}$ -closed.

Proof. Let $(\bigcup_{\lambda \in \wedge} A_{\lambda}) \subseteq U$ where U is mg^* -open. Then $A_{\lambda} \subseteq U$ for each $\lambda \in \wedge$. Since A_{λ} is $\mathcal{I}_{mg^{\#}}$ -closed for each $\lambda \in \wedge$, we have $A_{\lambda}^* \subseteq U$ and hence $\bigcup_{\lambda \in \wedge} A_{\lambda}^* \subseteq U$. By Lemma 3.8, $(\bigcup_{\lambda \in \wedge} A_{\lambda})^* \subseteq U$. Hence $(\bigcup_{\lambda \in \wedge} A_{\lambda})$ is $\mathcal{I}_{mg^{\#}}$ -closed.

Corollary 3.10. If A and B are $\mathcal{I}_{mg\#}$ -closed sets in (X, τ, \mathcal{I}) , then $A \cup B$ is $\mathcal{I}_{mg\#}$ -closed.

Proof. Let $A \cup B \subseteq U$ where U is mg^* -open. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are $\mathcal{I}_{mg^{\#}}$ -closed, then $A^* \subseteq U$ and $B^* \subseteq U$ and so $A^* \cup B^* \subseteq U$. By Lemma 2.4, $(A \cup B)^* = A^* \cup B^*$. Hence $A \cup B$ is $\mathcal{I}_{mg^{\#}}$ -closed.

Definition 3.11 ([11]). An *m*-structure $mg^* O(X)$ on a nonempty set X is said to have property \mathcal{J} if the union of any family of subsets belonging to $mg^* O(X)$ belongs to $mg^* O(X)$.

Example 3.12. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{c\}, \{b, c\}\}$ and $m_X = \{\phi, X, \{c\}\}$. Then mg^* -open sets are $\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}$ and $\{b, c\}$. It is shown that $mg^*O(X)$ does not have property \mathcal{J} .

Proposition 3.13. Let $gO(X) \subseteq mg^*O(X)$ and $mg^*O(X)$ have property \mathcal{J} . If A is $\mathcal{I}_{mg^{\#}}$ -closed in (X, τ, \mathcal{I}) and B is closed in (X, τ) , then $A \cap B$ is $\mathcal{I}_{mg^{\#}}$ -closed.

Proof. Let $A \cap B \subseteq U$ where U is mg^* -open. Then we have $A \subseteq U \cup (X-B)$. Since $\tau \subseteq gO(X) \subseteq mg^*O(X)$ and so $U \cup (X-B)$ is mg^* -open. Since A is $\mathcal{I}_{mg\#}$ -closed, then $A^* \subseteq U \cup (X-B)$ and hence $A^* \cap B \subseteq U \cap B \subseteq U$. By Lemma 2.4, $(A \cap B)^* \subseteq A^* \cap B^*$. Since $\tau \subseteq \tau^*$, B is *-closed and $B^* \subseteq B$. Therefore, we obtain $(A \cap B)^* \subseteq A^* \cap B^* \subseteq A^* \cap B \subseteq U$. This shows that $A \cap B$ is $\mathcal{I}_{mg\#}$ -closed. \Box

Proposition 3.14. If A is $\mathcal{I}_{mg^{\#}}$ -closed and $A \subseteq B \subseteq cl^{*}(A)$, then B is $\mathcal{I}_{mg^{\#}}$ -closed.

Proof. Let $B \subseteq U$ where U is mg^* -open. Then $A \subseteq U$ and A is $\mathcal{I}_{mg^{\#}}$ -closed. Therefore $A^* \subseteq U$ and $B^* \subseteq cl^*(B) \subseteq cl^*(A) = A \cup A^* \subseteq U$. Hence B is $\mathcal{I}_{mg^{\#}}$ -closed.

Proposition 3.15. A subset A of X is $\mathcal{I}_{mq\#}$ -open if and only if $F \subseteq int^*(A)$ whenever $F \subseteq A$ and F is mg^* -closed.

Proof. Suppose that A is $\mathcal{I}_{mg^{\#}}$ -open. Let $F \subseteq A$ and F be mg^* -closed. Then $X - A \subseteq X - F$ and X - F is mg^* -open. Since X-A is $\mathcal{I}_{mg^{\#}}$ -closed, then $(X-A)^* \subseteq X - F$ and $X - int^*(A) = cl^*(X-A) = (X-A) \cup (X-A)^* \subseteq X - F$ and hence $F \subseteq int^*(A)$.

Conversely, let $X-A\subseteq G$ where G is mg^* -open. Then $X-G\subseteq A$ and X-G is mg^* -closed. By the hypothesis, we have $X-G\subseteq int^*(A)$ and hence $(X-A)^*\subseteq cl^*(X-A)=X-int^*(A)\subseteq G$. Therefore, X-A is $\mathcal{I}_{mg^\#}$ -closed and A is $\mathcal{I}_{mg^\#}$ -open. \Box

Corollary 3.16. Let $gO(X) \subseteq mg^*O(X)$ and $mg^*O(X)$ have property \mathcal{J} . Then the following properties hold:

- (1). Every \star -open set is $\mathcal{I}_{mq^{\#}}$ -open and every $\mathcal{I}_{mq^{\#}}$ -open set is $\mathcal{I}_{g^{\star}}$ -open,
- (2). If A and B are $\mathcal{I}_{mg^{\#}}$ -open, then $A \cap B$ is $\mathcal{I}_{mg^{\#}}$ -open,
- (3). If A is $\mathcal{I}_{mq^{\#}}$ -open and B is open in (X, τ) , then $A \cup B$ is $\mathcal{I}_{mq^{\#}}$ -open,
- (4). If A is $\mathcal{I}_{mg^{\#}}$ -open and $int^{\star}(A) \subseteq B \subseteq A$, then B is $\mathcal{I}_{mg^{\#}}$ -open.

Proof. This follows from Remark 3.7, Propositions 3.13 and 3.14 and Corollary 3.10.

Lemma 3.17 ([11]). Let $(X, mg^* O(X))$ be an m-space and A a subset of X. Then $x \in mg^* - cl(A)$ if and only if $U \cap A \neq \phi$ for every $U \in mg^* O(X)$ containing x.

Lemma 3.18 ([11]). Let X be a nonempty set, $mg^*O(X)$ an m-structure on X and $mg^*O(X)$ have property \mathcal{J} . For a subset A of X, the following properties hold:

- (1). $A \in mg^* O(X)$ if and only if mg^* -int(A) = A,
- (2). A is mg^* -closed if and only if mg^* -cl(A)=A,
- (3). mg^* -int(A) $\in mg^*O(X)$ and mg^* -cl(A) is mg^* -closed.

4. Characterizations of $\mathcal{I}_{mq^{\#}}$ -closed Sets

In this section, let (X, τ, \mathcal{I}) be an ideal topological space and $mg^*O(X)$ an m-structure on X. We obtain several characterizations of $\mathcal{I}_{mg^{\#}}$ -closed sets.

Theorem 4.1. For a subset A of X, the following properties are equivalent:

- (1). A is $\mathcal{I}_{mg^{\#}}$ -closed,
- (2). $cl^{\star}(A) \subseteq U$ whenever $A \subseteq U$ and U is mg^{\star} -open,
- (3). $cl^{\star}(A) \cap F = \phi$ whenever $A \cap F = \phi$ and F is mg^{\star} -closed.

Proof. (1) \Rightarrow (2) Let A \subseteq U where U is mg^{*}-open. Then by (1), A^{*} \subseteq U and cl^{*}(A)=A \cup A^{*} \subseteq U.

 $(2) \Rightarrow (3) \text{ Let } A \cap F = \phi \text{ and } F \text{ be } mg^* \text{-closed. Then } A \subseteq X - F \text{ and } X - F \text{ is } mg^* \text{-open. By } (2), \text{ cl}^*(A) \subseteq X - F. \text{ Hence } \text{cl}^*(A) \cap F = \phi.$ $(3) \Rightarrow (1) \text{ Let } A \subseteq U \text{ where } U \text{ is } mg^* \text{-open. Then } A \cap (X - U) = \phi \text{ and } X - U \text{ is } mg^* \text{-closed. By } (3), \text{ cl}^*(A) \cap (X - U) = \phi \text{ and so}$ $A^* \subseteq \text{cl}^*(A) \subseteq U. \text{ Hence } A \text{ is } \mathcal{I}_{mg^{\#}} \text{-closed.}$

Definition 4.2. Let (X, τ) be a topological space, $mg^*O(X)$ an m-structure on X and A a subset of X. The subset $\wedge_{mg^*}(A)$ is defined as follows: $\wedge_{mg^*}(A) = \cap \{U : A \subseteq U, U \in mg^*O(X)\}.$

Theorem 4.3. A subset A of X is $\mathcal{I}_{mg^{\#}}$ -closed if and only if $cl^{\star}(A) \subseteq \wedge_{mg^{\star}}(A)$.

Proof. Suppose that A is $\mathcal{I}_{mg^{\#}}$ -closed. If $x \notin \wedge_{mg^{\star}}(A)$, then there exists $U \in mg^{\star}O(X)$ such that $A \subseteq U$ and $x \notin U$. Since A is $\mathcal{I}_{mg^{\#}}$ -closed, by Theorem 4.1, $cl^{\star}(A) \subseteq U$ and hence $x \notin cl^{\star}(A)$. Hence we obtain $cl^{\star}(A) \subseteq \wedge_{mg^{\star}}(A)$.

Conversely, suppose that $cl^*(A) \subseteq \wedge_{mg^*}(A)$. Let $A \subseteq U$ and $U \in mg^*O(X)$. Then $cl^*(A) \subseteq \wedge_{mg^*}(A) \subseteq U$. By Theorem 4.1, A is $\mathcal{I}_{mg^{\#}}$ -closed.

Theorem 4.4. Let $gO(X) \subseteq mg^*O(X)$ and $mg^*O(X)$ have property \mathcal{J} . For a subset A of X, the following properties are equivalent:

- (1). A is $\mathcal{I}_{mq^{\#}}$ -closed,
- (2). A^*-A contains no nonempty mg^* -closed set,
- (3). $A^{\star}-A$ is $\mathcal{I}_{mg^{\#}}$ -open,
- (4). $A \cup (X A^*)$ is $\mathcal{I}_{mg^{\#}}$ -closed,
- (5). $cl^{\star}(A) A$ contains no nonempty mg^{\star} -closed set,
- (6). mg^* - $cl(\{x\}) \cap A \neq \phi$ for each $x \in cl^*(A)$.

Proof. (1) \Rightarrow (2) Suppose that A is $\mathcal{I}_{mg\#}$ -closed. Let $F \subseteq A^* - A$ and F be mg^* -closed. Then $F \subseteq A^*$ and $F \not\subseteq A$. We have $A \subseteq X - F$ and X - F is mg^* -open. Therefore $A^* \subseteq X - F$ and so $F \subseteq X - A^*$. Hence $F \subseteq A^* \cap (X - A^*) = \phi$.

(2) \Rightarrow (3) Let $F \subseteq A^* - A$ and F be mg^* -closed. By (2), we have $F = \phi$ and so $F \subseteq int^*(A^* - A)$. By Proposition 3.15, $A^* - A$ is $\mathcal{I}_{mg^{\#}}$ -open.

 $(3) \Rightarrow (1) \text{ Let } A \subseteq U \text{ where } U \text{ is } mg^* \text{-open. Then } X - U \subseteq X - A \Rightarrow A^* \cap (X - U) \subseteq A^* \cap (X - A) = A^* - A. \text{ Since } A^* \text{ is closed in } (X, \tau) \text{ and hence } A^* \text{ is } g\text{-closed in } (X, \tau). \text{ Since every } g\text{-closed set is } mg^* \text{-closed and so } A^* \text{ is } mg^* \text{-closed. Since } mg^* O(X) \text{ has property } \mathcal{J}, \text{ then } A^* \cap (X - U) \text{ is } mg^* \text{-closed and by } (3), A^* - A \text{ is } \mathcal{I}_{mg\#} \text{-open. Therefore by Proposition } 3.15, A^* \cap (X - U) \subseteq \text{int}^* (A^* - A) = \text{int}^* (A^* \cap (X - A)) = \text{int}^* (A^*) \cap (\text{int}^* (X - A)) = \text{int}^* (A^*) \cap (X - cl^*(A)) \subseteq A^* \cap (A \cup A^*)^c = A^* \cap (A^c \cap (A^*)^c) = \phi \text{ and hence } A^* \subseteq U. \text{ Hence } A \text{ is } \mathcal{I}_{mg\#} \text{-closed.}$

 $(3) \Leftrightarrow (4) \text{ This follows from the fact that } \mathbf{X} - (A^{\star} - \mathbf{A}) = \mathbf{X} \cap (A^{\star} \cap \mathbf{A}^{c})^{c} = \mathbf{X} \cap ((A^{\star})^{c} \cup \mathbf{A}) = (\mathbf{X} \cap (A^{\star})^{c}) \cup (\mathbf{X} \cap \mathbf{A}) = \mathbf{A} \cup (\mathbf{X} - A^{\star}).$

 $(2) \Leftrightarrow (5) \text{ This follows from the fact that } cl^{*}(A) - A = (A \cup A^{*}) - A = (A \cup A^{*}) \cap A^{c} = (A \cap A^{c}) \cup (A^{*} \cap A^{c}) = A^{*} \cap A^{c} = A^{*} - A.$

 $(1)\Rightarrow(6)$ Suppose that A is $\mathcal{I}_{mg\#}$ -closed and mg^* -cl({x}) $\cap A=\phi$ for some $x\in cl^*(A)$. By Lemma 3.18, mg^* -cl({x}) is mg^* -closed. We have $A\subseteq X-(mg^*-cl({x}))$ and $X-(mg^*-cl({x}))$ is mg^* -open. Therefore by Theorem 4.1, $cl^*(A)\subseteq X-(mg^*-cl({x}))\subseteq X-{x}$. This contradicts that $x\in cl^*(A)$. Hence $mg^*-cl({x})\cap A\neq\phi$ for each $x\in cl^*(A)$.

 $(6)\Rightarrow(1)$ Suppose $mg^*-cl(\{x\})\cap A\neq\phi$ for each $x\in cl^*(A)$. We have to prove that A is $\mathcal{I}_{mg^{\#}}$ -closed. Suppose A is not $\mathcal{I}_{mg^{\#}}$ -closed. Then, by Theorem 4.1, $\phi\neq cl^*(A)-U$ for some mg^* -open set U containing A. There exists $x\in cl^*(A)-U$. Since $x\notin U$, by Lemma 3.17, $mg^*-cl(\{x\})\cap U=\phi$ and hence $mg^*-cl(\{x\})\cap A\subseteq mg^*-cl(\{x\})\cap U=\phi$. This shows that $mg^*-cl(\{x\})\cap A=\phi$ for some $x\in cl^*(A)$. This is a contradiction. Hence A is $\mathcal{I}_{mg^{\#}}$ -closed.

Corollary 4.5. Let $gO(X) \subseteq mg^*O(X)$ and $mg^*O(X)$ have property \mathcal{J} . For a subset A of X, the following properties are equivalent:

- (1). A is $\mathcal{I}_{mq^{\#}}$ -open,
- (2). $A-int^{\star}(A)$ contains no nonempty mg^{\star} -closed set,
- (3). mg^* - $cl({x}) \cap (X-A) \neq \phi$ for each $x \in X$ -int^{*}(A).

Proof. This follows from Theorem 4.4.

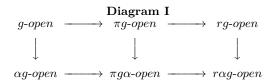
Theorem 4.6. Let $gO(X) \subseteq mg^*O(X)$ and $mg^*O(X)$ have property \mathcal{J} . A subset A of X is $\mathcal{I}_{mg^{\#}}$ -closed if and only if A=F-N where F is \star -closed and N contains no nonempty mg^* -closed set.

Proof. If A is $\mathcal{I}_{mg\#}$ -closed, then by Theorem 4.4, $N=A^*-A$ contains no nonempty mg^* -closed set. If $F=cl^*(A)$, then $A\cup A^*=cl^*(A)=F$ and by Lemma 2.4, we obtain $F^*=(A\cup A^*)^*=A^*\cup(A^*)^*\subseteq A^*\cup A=F$. Therefore F is *-closed such that $F-N=(A\cup A^*)-(A^*-A)=(A\cup A^*)\cap(A^*\cap A^c)^c=(A\cup A^*)\cap(A\cup (A^*)^c)=A\cup(A^*\cap (A^*)^c)=A$.

Conversely, suppose A=F-N where F is *-closed and N contains no nonempty mg^* -closed set. Let U be an mg^* -open set such that $A\subseteq U$. Then $F-N\subseteq U \Rightarrow F\cap(X-U)\subseteq N$. Since A^* is mg^* -closed and hence $A^*\cap(X-U)$ is mg^* -closed. Since $A\subseteq F$ and $F^*\subseteq F$, then $A^*\cap(X-U)\subseteq F^*\cap(X-U)\subseteq F\cap(X-U)\subseteq N$. Therefore, $A^*\cap(X-U)=\phi$ and so $A^*\subseteq U$. Hence A is $\mathcal{I}_{mg^{\#}}$ -closed. \Box

5. New Forms of Closed Sets in Ideal Topological Spaces

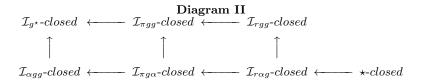
By gO(X) (resp. $\pi GO(X)$, RGO(X), $\alpha GO(X)$, $\pi G\alpha O(X)$, $R\alpha GO(X)$), we denote the collection of all g-open (resp. π g-open, rg-open, π g-open, π g-open, π g-open, π g-open) sets of a topological space (X, τ) . These collections are m-structures on X. By the definitions, we obtain the following diagram:



For subsets of an ideal topological space (X, τ, \mathcal{I}) , we can define new types of closed sets as follows:

Definition 5.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I}_{g^*} -closed (resp. $\mathcal{I}_{\pi gg}$ -closed, \mathcal{I}_{rgg} -closed, $\mathcal{I}_{\pi gg}$ -closed) if $A^* \subseteq U$ whenever $A \subseteq U$ and U is g-open (resp. πg -open, πg -open, $\pi g\alpha$ -open, $\pi g\alpha$ -open, $\pi g\alpha$ -open) in (X, τ) .

By Diagram I and Definition 5.1, we have the following diagram:



References

- [1] I.Arockiarani, K.Balachandran and C.Janaki, On contra- $\pi g \alpha$ -continuous functions, Kochi J. Math., 3(2008), 201-209.
- [2] J.Dontchev and T.Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [3] A.I.El-Maghrabi and A.A.Nasef, Between semi-closed and GS-closed sets, Journal of Taibah University for Science, 2(2009), 78-87.
- [4] T.R.Hamlett, D.Rose and D.Jankovic, Paracompactness with respect to an ideal, Internat. J. Math. Math. Sci., 20(1997), 433-442.
- [5] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.

- [6] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [7] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [8] H.Maki, K.C.Rao and A.Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49(1999), 17-29.
- [9] K.Nono, R.Devi, M.Devipriya, M.Muthukumarasamy and H.Maki, On g[#]α-closed sets and the digital plane, Bull.
 Fukuoka Univ. Ed. Part III, 53(2004), 15-24.
- [10] T.Noiri and V.Popa, Between closed sets and g-closed sets, Rend. Circ. Mat. Palermo, 55(2)(2006), 175-184.
- [11] S.Padmasekaran, O.Ravi and S.Srinivasan, Between closed sets and g^{*}-closed sets, International Journal of Mathematical Archive, 5(10)(2014), 251-256.
- [12] N.Palaniyappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [13] V.Popa and T.Noiri, On M-continuous functions, Anal. Univ. Dunarea de Jos Galati, Ser. Mat. Fiz. Mec. Teor., 18(23)(2000), 31-41.
- [14] O.Ravi, M.Paranjothi, S.Murugesan and M.Meharin, g*-closed sets in ideal topological spaces, South Asian Journal of Mathematics, 4(6)(2014), 252-264.
- [15] P.Sundaram and A.Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci., 3(4)(2001), 563-575.
- [16] M.K.R.S.Veerakumar, Pre-semi-closed sets, Indian J. Math., 44(2)(2002), 165-181.
- [17] M.K.R.S.Veerakumar, g^{*}-preclosed sets, Acta Ciencia Indica (Mathematics), Meerut, XXVIII(M)(1)(2002), 51-60.
- [18] M.K.R.S.Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 21(2000), 1-19.