

International Journal of Current Research in Science and Technology

New Classes of Ideal Topological Quotient Maps

Research Article

O.Ravi¹*, L.Rajendran², J.Xavier Adaikalaraj³ and C.Rajan⁴

1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

2 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.

3 Department of Mathematics, Arul Anandar College, Karumathur, Madurai, Tamil Nadu, India.

4 Department of Mathematics, Vivekanada College, Thiruvedagam, Madurai, Tamil Nadu, India.

Abstract: The purpose of this paper is to study the concept of quotient maps in ideal topological spaces and study some of its stronger forms.

MSC: 54C08

Keywords: Ideal topological space, α^* -*I*-open or $\alpha^*_{\mathcal{I}}$ -open set, semi*-*I*-open set, pre_{*}-open set. c JS Publication.

1. Introduction

Let (X, τ) be a topological space with no separation axioms assumed. For any $A \subseteq X$, cl(A) and int(A) will denote the closure and interior of A in (X, τ) , respectively. Njastad [\[9\]](#page-6-0) introduced the concept of an α -sets and Mashhour et al. [\[8\]](#page-6-1) introduced α -continuous maps in topological spaces. The topological notions of semi-open sets and semi-continuity, and preopen sets and precontinuity were introduced by Levine [\[6\]](#page-6-2) and Mashhour et al. [\[7\]](#page-6-3) respectively. After advent of these notions, Reilly [\[11\]](#page-7-0) and Lellis Thivagar [\[5\]](#page-6-4) obtained many interesting and important results on α -continuity and α -irresolute maps in topological spaces. Lellis Thivagar [\[5\]](#page-6-4) introduced the concepts of α -quotient maps and α^* -quotient maps in topological spaces. A nonempty collection $\mathcal I$ of subsets of a set X is said to be an ideal on X if it satisfies the following two properties:

(1). $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$;

(2). A∈ $\mathcal I$ and B∈ $\mathcal I$ imply A∪B∈ $\mathcal I$. [\[4\]](#page-6-5)

A topological space (X, τ) with an ideal $\mathcal I$ on X is called an ideal topological space (an ideal space) and is denoted by (X, τ) τ , *I*). For an ideal space (X, τ, \mathcal{I}) and a subset $A \subseteq X$, $A^*(\mathcal{I}) = \{x \in X : \text{U} \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$, is local function [\[4\]](#page-6-5) of A with respect to I and τ . It is well known that $c^*(A) = A \cup A^*$ defines a Kuratowski closure operator for a topology τ^* finer than τ [\[12\]](#page-7-1). int^{*}(A) will denote the interior of A in (X, τ^*, \mathcal{I}) .

Quite recently, Viswanathan and Jayasudha [\[13\]](#page-7-2) introduced and studied the notion of α^* -*T*-open or α^* -open [\[10\]](#page-6-6) sets. Ekici and Noiri [\[2\]](#page-6-7) introduced and studied the notion of semi^{*}-*I*-open sets. In [\[3\]](#page-6-8), they studied further properties of semi^{*}-*I*-open sets. Ekici [\[1\]](#page-6-9) introduced and studied the notion of pre_T -open sets.

[∗] *E-mail: siingam@yahoo.com*

In this paper, we introduce new classes of ideal topological maps called $(\mathcal{I},\mathcal{J})$ - α -quotient maps and $(\mathcal{I},\mathcal{J})$ - α^* -quotient maps in ideal topological spaces. At every places the new notions have been substantiated with suitable examples.

2. Preliminaries

Definition 2.1 ([\[10,](#page-6-6) [13\]](#page-7-2)). A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be α^* -*L*-open or $\alpha^*_{\mathcal{I}}$ -open if $A \subseteq$ $int^*(cl(int^*(A))).$

Definition 2.2 ([\[2,](#page-6-7) [3\]](#page-6-8)). *A subset K of an ideal topological space* (X, τ, \mathcal{I}) *is said to be*

- *(1). semi*[∗]-*I*-*open if* $K ⊆ cl(int[∗](K))$,
- *(2). semi*[∗] *-*I*-closed if its complement is semi*[∗] *-*I*-open.*

Definition 2.3 ([\[1\]](#page-6-9)). *A subset G of an ideal topological space* (X, τ, \mathcal{I}) *is said to be*

- *(1). pre* $_{\mathcal{I}}^*$ -open if $G \subseteq int^*(cl(G))$.
- (2). $pre^*_{\mathcal{I}}$ -closed if $X \backslash G$ is pre_{$\mathcal{I}}$}-open.

The family of all $\alpha^*_{\mathcal{I}}$ -open [resp. semi^{*}-*I*-open, pre_{\mathcal{I}}-open] sets of (X, τ, \mathcal{I}) is denoted by $\alpha^*_{\mathcal{I}}O(X)$ [resp. semi^{*}-*I*O(X), $pre^*_{\mathcal{I}}O(X)].$

Theorem 2.4 ([\[13\]](#page-7-2)). Let (X, τ, \mathcal{I}) be an ideal topological space. Then, $\alpha^*_{\mathcal{I}}O(X) = sem^* \mathcal{I}O(X) \cap pre^*_{\mathcal{I}}O(X)$.

Remark 2.5 ([\[13\]](#page-7-2)). *For a subset of an ideal topological space, the following holds.*

Every open set is $\alpha^*_{\mathcal{I}}$ -open but not conversely.

3. $(\mathcal{I}, \mathcal{J})$ - α -irresolute Maps

Definition 3.1 ([\[13\]](#page-7-2)). Let $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ be a map. Then f is said to be α^* -*I*-continuous [resp. semi^{*}-*I*-continuous, $\frac{p}{\sigma}$ -continuous] if the inverse image of each open set of Y is α^* -*I*-open [resp. semi^{*}-*I*-open, pre_I-open] in X.

Definition 3.2. A map $f : (X, \tau) \rightarrow (Y, \sigma, \mathcal{I})$ is called α^* -*I*-open [resp. semi^{*}-*I*-open, pre_{τ}^{*}-open, open] if the image of *each open set in* X is an α^* -*I*-open [resp. semi^{*}-*I*-open, pre_{I}-open, open] set of Y.

Theorem 3.3.

(1). A map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is α^* - \mathcal{I} -continuous if and only if it is semi^{\star}- \mathcal{I} -continuous and pre_{\mathcal{I}}-continuous.

(2). A map $f : (X, \tau) \rightarrow (Y, \sigma, \mathcal{I})$ is α^* -*I*-open if and only if it is semi^{*}-*I*-open and pre_{τ}-open.

Definition 3.4. Let $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ be a map. Then f is said to be $(\mathcal{I}, \mathcal{J})$ -a-irresolute (resp. $(\mathcal{I}, \mathcal{J})$ -semi-irresolute, $(\mathcal{I},\mathcal{J})$ -preirresolute) if the inverse image of every α^* -*J*-open [resp. semi^{*}-*J*-open, pre^{*}₇-open] set in Y is an α^* -*I*-open *[resp. semi*[⋆] *-*I*-open, pre*[∗] ^I *-open] set in X.*

Theorem 3.5. A map $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute if and only if for every semi^{*}-J-closed subset A *of Y,* $f^{-1}(A)$ *is semi*^{*}- I -closed *in X*.

Proof. If f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute, then for every semi^{*}- \mathcal{J} -open subset B of Y, f⁻¹(B) is semi^{*}- \mathcal{I} -open in X. If A is any semi^{*}-J-closed subset of Y, then Y−A is semi^{*}-J-open. Thus f⁻¹(Y−A) is semi^{*}-L-open but f⁻¹(Y−A)=X-f⁻¹(A) so that $f^{-1}(A)$ is semi^{*}-*T*-closed in X.

Conversely, if, for all semi^{*}-J-closed subsets A of Y, $f^{-1}(A)$ is semi^{*}-J-closed in X and if B is any semi^{*}-J-open subset of Y, then Y–B is semi^{*}-J-closed. Also f⁻¹(Y–B)=X− f⁻¹(B) is semi^{*}-L-closed. Thus f⁻¹(B) is semi^{*}-L-open in X. Hence f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute. \Box

Theorem 3.6. Let f and g be two maps. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ *-semi-irresolute and g :* $(Y, \sigma, \mathcal{J}) \to (Z, \mu, \sigma, \mathcal{J})$ K) is $(\mathcal{J}, \mathcal{K})$ -semi-irresolute then gof : $(X, \tau, \mathcal{I}) \rightarrow (Z, \mu, \mathcal{K})$ is $(\mathcal{I}, \mathcal{K})$ -semi-irresolute.

Proof. If A⊆Z is semi^{*}-*K*-open, then $g^{-1}(A)$ is semi^{*}-*J*-open set in Y because g is $(\mathcal{J}, \mathcal{K})$ -semi-irresolute. Consequently since f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute, $f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$ is semi^{*}- \mathcal{I} -open set in X. Hence gof is $(\mathcal{I}, \mathcal{K})$ -semi-irresolute. \Box

Corollary 3.7. If $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ - α -irresolute and $g: (Y, \sigma, \mathcal{J}) \to (Z, \mu, \mathcal{K})$ is $(\mathcal{J}, \mathcal{K})$ - α -irresolute then *gof :* $(X, \tau, \mathcal{I}) \rightarrow (Z, \mu, \mathcal{K})$ *is* $(\mathcal{I}, \mathcal{K})$ *-* α *-irresolute.*

Corollary 3.8. If the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ -a-irresolute and the map $g : (Y, \sigma, \mathcal{J}) \rightarrow (Z, \mu)$ is α^* - \mathcal{J} *continuous then gof :* $(X, \tau, \mathcal{I}) \rightarrow (Z, \mu)$ *is* α^* *-* \mathcal{I} *-continuous.*

Corollary 3.9. Let $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ and $g : (Y, \sigma, \mathcal{J}) \rightarrow (Z, \mu)$ be two maps. Then

(1). if f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute and g is semi^{*}- \mathcal{J} -continuous, then gof is semi^{*}- \mathcal{I} -continuous.

(2). if f is $(\mathcal{I}, \mathcal{J})$ -preirresolute and g is pre^{*}₇-continuous, then gof is pre^{*}₇-continuous.

Theorem 3.10. If the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ *-semi-irresolute and* $(\mathcal{I}, \mathcal{J})$ *-preirresolute then* f is $(\mathcal{I}, \mathcal{J})$ *-airresolute.*

4. $(\mathcal{I}, \mathcal{J})$ - α -quotient Maps

Definition 4.1. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a surjective map. Then f is said to be quotient provided a subset S of Y is open *in Y if and only if* $f^{-1}(S)$ *is open in X.*

Definition 4.2. Let $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ be a surjective map. Then f is said to be

(1). an $(\mathcal{I}, \mathcal{J})$ - α -quotient if f is α^* - \mathcal{I} -continuous and $f^{-1}(V)$ is open in X implies V is an α^* - \mathcal{J} -open set in Y.

(2). a $(\mathcal{I}, \mathcal{J})$ -semi-quotient if f is semi^{*}- \mathcal{I} -continuous and $f^{-1}(V)$ is open in X implies V is a semi^{*}- \mathcal{J} -open set in Y.

(3). a $(\mathcal{I}, \mathcal{J})$ -prequotient if f is pre^{*}_{*r*}-continuous and $f^{-1}(V)$ is open in X implies V is a pre * -open set in Y.

Example 4.3. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}\$ and $\mathcal{I} = \{\emptyset, \{a\}\}\$. We have $\alpha^*_{\mathcal{I}}O(X) = semi^* \mathcal{I}O(X) =$ $pre^*_{\mathcal{I}}O(X) = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}.$ Let $Y = \{p, q, r\}, \sigma = \{\emptyset, Y, \{r\}, \{p, r\}, \{q, r\}\}$ and $J = \{\emptyset, \{p\}\}.$ We have $\alpha_{\mathcal{J}}^{\star} O(Y) = semi^{\ast}\mathcal{J}O(Y) = pre^{\ast}\mathcal{J}O(Y) = {\emptyset, Y, \{r\}, \{p, r\}, \{q, r\}}.$

Define f : $(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ *by* $f(a) = p$ *;* $f(c) = q$ *;* $f(c) = r$ *. Since the inverse image of each open in Y is* α^* *-* \mathcal{I} *-open in X*, clearly f is α^* -*I*-continuous and an $(\mathcal{I}, \mathcal{J})$ - α -quotient map.

Theorem 4.4. If the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is surjective, α^* -*I*-continuous and α^* -*J*-open then f is an $(\mathcal{I}, \mathcal{J})$ - α *quotient map.*

Proof. Suppose $f^{-1}(V)$ is any open set in X. Then $f(f^{-1}(V))$ is an $\alpha^*\text{-}\mathcal{J}$ -open set in Y as f is $\alpha^*\text{-}\mathcal{J}$ -open. Since f is surjective, $f(f^{-1}(V))=V$. Thus V is an α^* - $\mathcal J$ -open set in Y. Hence f is $(\mathcal I, \mathcal J)$ - α -quotient map. \Box

Theorem 4.5. If the map $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is open surjective and $(\mathcal{I}, \mathcal{J})$ - α -irresolute, and the map $g : (Y, \sigma, \mathcal{J})$ \mathcal{J} \rightarrow (Z, μ, \mathcal{K}) is an $(\mathcal{J}, \mathcal{K})$ *-α-quotient then gof :* $(X, \tau, \mathcal{I}) \rightarrow (Z, \mu, \mathcal{K})$ is an $(\mathcal{I}, \mathcal{K})$ *-α-quotient map.*

Proof. Let V be any open set in Z. Since g is α^* -J-continuous, $g^{-1}(V) \in \alpha^*_{\mathcal{J}}O(Y)$. Since f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in \alpha_{\mathcal{I}}^{\star} O(X)$. Thus gof is $\alpha^{\star}\text{-}\mathcal{I}$ -continuous. Also suppose $f^{-1}(g^{-1}(V))$ is open set in X. Since f is open, $f(f^{-1}(g^{-1}(V)))$ is open set in Y. Since f is surjective, $f(f^{-1}(g^{-1}(V)))=g^{-1}(V)$ and since g is $(\mathcal{J},\mathcal{K})$ - α -quotient, $V \in \alpha_{\mathcal{K}}^{\star}O(Z)$. Hence gof is an $(\mathcal{I}, \mathcal{K})$ - α -quotient. \Box

Corollary 4.6. If the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is open surjective and $(\mathcal{I}, \mathcal{J})$ *-semi-* $[(\mathcal{I}, \mathcal{J})$ *₋pre]* irresolute and the map $g: (Y, \sigma, \mathcal{J}) \rightarrow (Z, \mu, \mathcal{K})$ is $(\mathcal{J}, \mathcal{K})$ *-semi-* $[(\mathcal{J}, \mathcal{K})$ *-pre]* quotient then gof: $(X, \tau, \mathcal{I}) \rightarrow (Z, \mu, K)$ is $(\mathcal{I}, \mathcal{K})$ *-semi-* $[(\mathcal{I}, \mathcal{K})$ *-pre] quotient map.*

Theorem 4.7. *A map f :* $(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is an $(\mathcal{I}, \mathcal{J})$ - α -quotient if and only if it is both $(\mathcal{I}, \mathcal{J})$ -semi-quotient and (I,J)*-prequotient.*

Proof. Let V be any open set in Y. Since f is α^* -*I*-continuous, $f^{-1}(V) \in \alpha^*_{\mathcal{I}}O(X)$ =semi^{*}- $\mathcal{I}O(X) \cap \text{pre}^*_{\mathcal{I}}O(X)$. Thus f is both semi^{*}-*I*-continuous and pre_{*I*}-continuous. Also suppose $f^{-1}(V)$ is an open set in X. Since f is $(\mathcal{I}, \mathcal{J})$ - α -quotient, $V \in \alpha_{\mathcal{J}}^{\star}O(Y) = \text{semi}^* \text{-}\mathcal{J}O(Y) \cap \text{pre}_{\mathcal{J}}^{\star}O(Y)$. Thus V is both semi^{*}- \mathcal{J} -open set and pre_{\mathcal{J}}-open set in Y. Hence f is both $(\mathcal{I}, \mathcal{J})$ semi-quotient and $(\mathcal{I}, \mathcal{J})$ -prequotient.

Conversely, since f is both $(\mathcal{I}, \mathcal{J})$ -semi-quotient and $(\mathcal{I}, \mathcal{J})$ -prequotient, f is both semi^{*}-*I*-continuous and pre_{*I*}continuous. Hence f is α^* -*T*-continuous. Also suppose $f^{-1}(V)$ is an open set in X. By Definition 4.2, V∈semi^{*}- $\mathcal{J}O(Y) \cap \text{pre}_{\mathcal{J}}^{*}O(Y) = \alpha_{\mathcal{J}}^{*}O(Y)$. Thus f is $(\mathcal{I}, \mathcal{J})$ - α -quotient. \Box

Definition 4.8.

- (1). Let $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ be a surjective and α^* -*I*-continuous map. Then f is said to be strongly \mathcal{I} - α -quotient provided *a subset S of Y is open set in Y if and only if* $f^{-1}(S)$ *is an* α^* -*I*-open set in X.
- *(2).* Let $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ be a surjective and semi^{*}- \mathcal{I} -continuous map. Then f is said to be strongly \mathcal{I} -semi-quotient *provided a subset S of Y is open set in Y if and only if* $f^{-1}(S)$ is semi^{*}- $\mathcal I$ -open set in X.
- *(3).* Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a surjective and $pre^*_{\mathcal{I}}$ -continuous map. Then f is said to be strongly \mathcal{I} -prequotient provided *a subset S of Y is open set in Y if and only if* $f^{-1}(S)$ *is pre* $\frac{1}{\mathcal{I}}$ -open set in X.

Theorem 4.9. If the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is strongly *I*-semi-quotient and strongly *I*-prequotient then f is strongly I*-*α*-quotient.*

Proof. Since f is both semi^{*}-*I*-continuous and pre_{*I*}-continuous, by Theorem 3.3, f is α^* -*I*-continuous. Also let V be an open set in Y. By Definition 4.8, $f^{-1}(V) \in \text{semi}^* \text{-} \mathcal{I}O(X) \cap \text{pre}_\mathcal{I}^*O(X) = \alpha_\mathcal{I}^*O(X)$.

Conversely, let f⁻¹(V)∈α^{*}_τO(X). Then $\alpha^*_{\mathcal{I}}O(X)$ =semi^{*}- $\mathcal{I}O(X) \cap \text{pre}^*_{\mathcal{I}}O(X)$. Since f is strongly *I*-semi-quotient and strongly $\mathcal{I}\text{-prequotient},$ V is open set in Y. Hence f is strongly $\mathcal{I}\text{-}\alpha\text{-quotient}.$ \Box

5. $(\mathcal{I}, \mathcal{J})$ -α^{*}-quotient maps

Definition 5.1. *Let f :* $(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ *be a surjective map. Then f is said to be*

(1). (I, J) -α^{*}-quotient if f is (I, J) -α-irresolute and $f^{-1}(S)$ is α^{*}-*I*-open set in *X* implies *S* is open set in *Y*.

(2). $(\mathcal{I}, \mathcal{J})$ -semi-*quotient if f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute and $f^{-1}(S)$ is semi^{*}- \mathcal{I} -open set in X implies S is open set in Y.

(3). $(\mathcal{I}, \mathcal{J})$ -pre-*quotient if f is $(\mathcal{I}, \mathcal{J})$ -preirresolute and $f^{-1}(S)$ is pre_{\mathcal{I}}-open set in X implies S is open set in Y.

Definition 5.2. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be a map. Then f is said to be strongly $(\mathcal{I}, \mathcal{J})$ - α -open if the image of every α^* -*I*-open set in X is an α^* -*J*-open set in Y.

Example 5.3. *Consider the Example 4.3. Clearly f is* $(\mathcal{I}, \mathcal{J})$ *-* α *-irresolute and* $(\mathcal{I}, \mathcal{J})$ *-* α ^{*}*-quotient.*

Example 5.4. *Consider the Example 4.3. Clearly f is strongly* $(\mathcal{I}, \mathcal{J})$ - α -open.

Theorem 5.5. Let the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ be surjective strongly $(\mathcal{I}, \mathcal{J})$ *-a-open and* $(\mathcal{I}, \mathcal{J})$ *-a-irresolute, and the* $map\ g: (Y, \sigma, \mathcal{J}) \rightarrow (Z, \mu, \mathcal{K})$ be an $(\mathcal{J}, \mathcal{K})$ - α^* -quotient. Then gof: $(X, \tau, \mathcal{I}) \rightarrow (Z, \mu, \mathcal{K})$ is an $(\mathcal{I}, \mathcal{K})$ - α^* -quotient map.

Proof. Let V be any α^* -K-open set in Z. Then $g^{-1}(V)$ is an α^* -J-open set in Y as g is an $(\mathcal{J}, \mathcal{K})$ - α^* -quotient map. Then $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is an α^* -*T*-open set in X as f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute. This shows that gof is $(\mathcal{I}, \mathcal{K})$ - α -irresolute. Also suppose $(gof)^{-1}(V) = f^{-1}(g^{-1}(V))$ is an α^* -*T*-open set in X. Since f is strongly $(\mathcal{I}, \mathcal{J})$ - α -open, $f(f^{-1}(g^{-1}(V)))$ is an α^* - \mathcal{J} -open set in Y. Since f is surjective, $f(f^{-1}(g^{-1}(V)))=g^{-1}(V)$ is an α^* -*J*-open set in Y. Since g is an $(\mathcal{J},\mathcal{K})$ - α^* -quotient map, V is open in Z. Hence the theorem. \Box

Theorem 5.6. If the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is both $(\mathcal{I}, \mathcal{J})$ *-semi-*quotient and* $(\mathcal{I}, \mathcal{J})$ *-pre-*quotient then* f is $(\mathcal{I}, \mathcal{J})$ α**-quotient.*

Proof. Since f is both $(\mathcal{I}, \mathcal{J})$ -semi-*quotient and $(\mathcal{I}, \mathcal{J})$ -pre-*quotient, f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute and $(\mathcal{I}, \mathcal{J})$ -preirresolute. By Theorem 3.10, f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute. Also suppose $f^{-1}(V) \in \alpha^*_{\mathcal{I}}O(X)$. Then $\alpha^*_{\mathcal{I}}O(X)$ =semi*- $\mathcal{I}O(X) \cap \text{pre}^*_{\mathcal{I}}O(X)$. Therefore $f^{-1}(V)$ is semi^{*}-*T*-open in X and $f^{-1}(V)$ is pre_{\mathcal{I}}-open in X. Since f is $(\mathcal{I}, \mathcal{J})$ -semi-*quotient and $(\mathcal{I}, \mathcal{J})$ -pre-*quotient, by Definition 5.1., V is open set in Y. Thus f is $(\mathcal{I}, \mathcal{J})$ - α^* -quotient. \Box

Theorem 5.7. Let $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ be a strongly \mathcal{I} - α -quotient and $(\mathcal{I}, \mathcal{J})$ - α -irresolute map and $g: (Y, \sigma, \mathcal{J}) \rightarrow (Z, \sigma, \mathcal{J})$ μ , *K)* be an $(\mathcal{J}, \mathcal{K})$ -α^{*}-quotient map then gof : $(X, \tau, \mathcal{I}) \rightarrow (Z, \mu, \mathcal{K})$ is an $(\mathcal{I}, \mathcal{K})$ -α^{*}-quotient.

Proof. Let $V \in \alpha^*_{\mathcal{K}}O(Z)$. Since g is $(\mathcal{J}, \mathcal{K})$ - α -irresolute, $g^{-1}(V) \in \alpha^*_{\mathcal{J}}O(Y)$. Since f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in \alpha_{\mathcal{I}}^{\star}O(X)$. Thus gof is $(\mathcal{I}, \mathcal{K})$ - α -irresolute. Also suppose $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \in \alpha_{\mathcal{I}}^{\star}O(X)$. Since f is strongly $\mathcal{I}\text{-}\alpha$ -quotient, $g^{-1}(V)$ is open set in Y. Then $g^{-1}(V)\in \alpha_{\mathcal{J}}^{\star}O(Y)$. Since g is $(\mathcal{J},\mathcal{K})\text{-}\alpha^*$ -quotient, V is open set in Z. Hence gof is $(\mathcal{I}, \mathcal{K})$ - α^* - \mathcal{I} -quotient. \Box

6. Comparison

Theorem 6.1. Let $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ be a surjective map. Then f is $(\mathcal{I}, \mathcal{J})$ - α^* -quotient if and only if it is strongly I*-*α*-quotient.*

Proof. Let V be an open set in Y. Then $V \in \alpha_{\mathcal{J}}^* O(Y)$. Since f is $(\mathcal{I}, \mathcal{J})$ - α^* -quotient, $f^{-1}(V) \in \alpha_{\mathcal{I}}^* O(X)$. Conversely, let $f^{-1}(V) \in \alpha_{\mathcal{I}}^{*}O(X)$. Since f is $(\mathcal{I}, \mathcal{J})$ -α^{*}-quotient, V is open set in Y. Hence f is strongly \mathcal{I} -α-quotient map.

Conversely, let V be an open set in Y. Then $V \in \alpha_{\mathcal{J}}^{\star}O(Y)$. Since f is strongly \mathcal{I} - α -quotient, $f^{-1}(V) \in \alpha_{\mathcal{I}}^{\star}O(X)$. Thus f is $(\mathcal{I}, \mathcal{J})$ α-irresolute. Also since f is strongly $\mathcal{I}\text{-}\alpha$ -quotient, $f^{-1}(V) \in \alpha^*_{\mathcal{I}}O(X)$ implies V is open set in Y. Hence f is $(\mathcal{I}, \mathcal{J})$ -α*-quotient \Box map.

Theorem 6.2. *If the map f :* $(X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ *is quotient then it is* $(\mathcal{I}, \mathcal{J})$ *-a-quotient.*

Proof. Let V be an open set in Y. Since f is quotient, $f^{-1}(V)$ is open set in X and $f^{-1}(V) \in \alpha^*_{\mathcal{I}}O(X)$. Hence f is α^* - \mathcal{I} continuous. Suppose $f^{-1}(V)$ is an open set in X. Since f is quotient, V is open set in Y. Then $V \in \alpha_{\mathcal{J}}^{\star}O(Y)$. Hence f is \Box $(\mathcal{I}, \mathcal{J})$ - α -quotient map.

Theorem 6.3. If the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ - α -irresolute then it is α^* - \mathcal{I} -continuous.

Proof. Let A be open set in Y. Then $A \in \alpha_{\mathcal{J}}^* O(Y)$. Since f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute, $f^{-1}(A) \in \alpha_{\mathcal{I}}^* O(X)$. It shows that f is α^* -*T*-continuous map. \Box

Theorem 6.4. *If the map f : (X,* τ *, I*) \rightarrow (*Y,* σ *, J) is* (*I, J*)*-* α ^{*}*-quotient then it is* (*I, J*)*-* α *-quotient.*

Proof. Let f be $(\mathcal{I}, \mathcal{J})$ - α^* -quotient. Then f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute. We have f is α^* - \mathcal{I} -continuous. Also suppose $f^{-1}(V)$ is an open in X. Then $f^{-1}(V) \in \alpha_{\mathcal{I}}^{\star}O(X)$. By assumption, V is open set in Y. Therefore $V \in \alpha_{\mathcal{J}}^{\star}O(Y)$. Hence f is $(\mathcal{I}, \mathcal{J})$ - α -quotient.

Theorem 6.5. *Every* $(\mathcal{I}, \mathcal{J})$ *-*α^{*}*-quotient map is* $(\mathcal{I}, \mathcal{J})$ *-*α*-irresolute.*

Proof. We obtain it from Definition 5.1.

Theorem 6.6. *Every* $(\mathcal{I}, \mathcal{J})$ - α -quotient map is α^* - \mathcal{I} -continuous.

Proof. We obtain it from Definition 4.2.

Remark 6.7. *The converses of Theorems 4.9 and 5.6 are not true as per the following example.*

Example 6.8. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}$, $Y = \{p, q, r\}$, $\sigma = \{\emptyset, Y, \{r\}, \{p, r\}\}$, $\mathcal{I} = \{\emptyset, \{b\}, \{a, b\}\}$ *and* $\mathcal{J} = \{\emptyset, \{q\}, \{p, q\}\}\$. Define $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ by $f(a) = p$; $f(b) = q$ and $f(c) = r$. Clearly f is $\alpha^* \mathcal{I}$ -continuous and strongly \mathcal{I} - α -quotient. Since $f^{-1}(\lbrace q, r \rbrace) = \lbrace b, c \rbrace \in semi^* \mathcal{I}O(X)$ and $\lbrace q, r \rbrace$ is not open set in Y, f is not strongly \mathcal{I} *semi-quotient. Moreover f is (*I*,* J *)-*α*-irresolute, (*I*,* J *)-*α**-quotient and (*I*,* J *)-semi-irresolute. Since f*[−]¹ *(*{*q, r*}*)=*{*b, c*}∈ *semi** $IO(X)$ and $\{q, r\}$ *is not open set in Y, f is not* $(I, \mathcal{J})\alpha$ *^{*}quotient.*

Remark 6.9. *The converses of Theorems 6.4 and 6.5 are not true as per the following example.*

Example 6.10. Consider the Example [6.8.](#page-5-0) Clearly f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute and $(\mathcal{I}, \mathcal{J})$ - α -quotient maps. Since $f^{-1}(\{q, \mathcal{J})$ $\{f(r)\}=\{b, c\} \in \alpha_{\mathcal{I}}^{*}O(X)$ and $\{p, q\}$ is not open set in Y, f is neither strongly $\mathcal{I}\text{-}\alpha$ -quotient nor $(\mathcal{I}, \mathcal{J})\text{-}\alpha^{*}$ -quotient.

Remark 6.11. *The converse of Theorem 6.2 is not true and a strongly* I*-*α*-quotient map need not be quotient as per the following example.*

Example 6.12. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$, $Y = \{p, q, r\}$, $\sigma = \{\emptyset, Y, \{p\}, \{p, q\}, \{p, r\}\}$, $\mathcal{I} = \{\emptyset\}$ and $\mathcal{J} = \{\emptyset\}$. Define $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ by $f(a)=p$, $f(b)=q$ and $f(c)=r$. Clearly f is $(\mathcal{I}, \mathcal{J})$ - α -quotient and strongly $\mathcal{I}-\alpha$ -quotient map. Since $f^{-1}(\lbrace p, q \rbrace) = \lbrace a, b \rbrace$ *is not open in X where* $\lbrace p, q \rbrace$ *is open in Y, f is not quotient map.*

Remark 6.13. *A quotient map need not be strongly* I*-*α*-quotient as per the following example.*

Example 6.14. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$, $Y = \{p, q, r\}$, $\sigma = \{\emptyset, Y, \{p\}, \{p, q\}\}$ and $\mathcal{I} = \{\emptyset\}$. Define $f : (X, \mathcal{I})$ τ , \mathcal{I}) \rightarrow (Y, σ) by $f(a)=p$; $f(b)=q$ and $f(c)=r$. Clearly f is quotient but not strongly \mathcal{I} - α -quotient map.

 \Box

 \Box

Remark 6.15. *The converses of Theorems 6.3 and 6.6 are not true as per the following example.*

Example 6.16. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, $Y = \{p, q, r\}$, $\sigma = \{\emptyset, Y, \{r\}, \{p, r\}\}$, $\mathcal{I} = \{\emptyset, \{b\}, \{a, b\}\}$ *and* $\mathcal{J} = \{\emptyset, \{q\}, \{p, q\}\}\$. Define $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ by $f(a)=p$; $f(b)=q$ and $f(c)=r$. Clearly f is α^* - \mathcal{I} -continuous. Since $f^{-1}(\lbrace q, r \rbrace) = \lbrace b, c \rbrace \notin \alpha_{\mathcal{I}}^{\star} O(X)$ where $\lbrace q, r \rbrace \in \alpha_{\mathcal{I}}^{\star} O(Y)$, f is not $(\mathcal{I}, \mathcal{J})$ - α -irresolute. Also, since $f^{-1}(\lbrace q \rbrace) = \lbrace b \rbrace$ is open in *X* where ${q} \notin \alpha_{\mathcal{J}}^* O(Y)$, f is not $(\mathcal{I}, \mathcal{J})$ - α -quotient map.

Remark 6.17. *We obtain the following diagram from the above discussions.*

Where $A \rightarrow B$ means that A does not necessarily imply B and, moreover,

- $(1) = (\mathcal{I}, \mathcal{J})$ - α -irresolute map.
- $(2) = (\mathcal{I}, \mathcal{J})$ -α^{*}-quotient map.
- (3) = strongly *I*- α -quotient map.
- $(4) = \alpha^*$ -*T*-continuous map.
- $(5) = (\mathcal{I}, \mathcal{J})$ - α -quotient map.
- (6) = quotient map.

References

- [1] E.Ekici, *On* $AC_{\mathcal{I}}$ -sets, $BC_{\mathcal{I}}$ -sets, $\beta^*_{\mathcal{I}}$ -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(1)(2011), 47-54.
- [2] E.Ekici and T.Noiri, ∗*-hyperconnected ideal topological spaces*, Analele Stiintifice Ale Universitatii Al I. Cuza Din Iasi - Serie Noua-Matematica, Tomul LVIII, 1(2012), 121-129.
- [3] E.Ekici and T.Noiri, ∗*-extremally disconnected ideal topological spaces*, Acta Math. Hungar. 122(1-2)(2009), 81-90.
- [4] K.Kuratowski, *Topology*, Vol. I, Academic Press, New York, (1966).
- [5] M.Lellis Thivagar, *A note on quotient mappings*, Bull. Malaysian Math. Sci. Soc. (Second series), 14(1991), 21-30.
- [6] N.Levine, *Semi-open sets and semi-continuity in topological spaces*, Amer. Math. Monthly, 70(1963), 36-41.
- [7] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, *On precontinuous and weak pre-continuous mappings*, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [8] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α*-continuous and* α*-open mappings*, Acta Math. Hungar., 41(1983), 213-218.
- [9] O.Njastad, *On some classes of nearly open sets*, Pacific J. Math., 15(1965), 961-970.
- [10] O.Ravi, K.M.Dharmalingam, M.Meharin and P.Santhi, *On I_{ngα}*∗-closed sets in ideal topological spaces, Journal of New Theory, 2(2015), 55-62.
- [11] I.L.Reilly and M.K.Vamanamurthy, *On* α*-continuity in topological spaces*, Acta Math. Hungar., 45(1-2)(1985), 27-32.
- [12] R.Vaidyanathaswamy R, *Set topology*, Chelsea Publishing Company, New York, (1960).
- [13] K.Viswanathan and J.Jayasudha, *Some new sets and decompositions of* α^* -*I*-continuity and A_{IR} -continuity via ideal*ization*, Malaya J. Matematik, S(1)(2013), 17-23.