

International Journal of Current Research in Science and Technology

New Classes of Ideal Topological Quotient Maps

Research Article

O.Ravi^{1*}, L.Rajendran², J.Xavier Adaikalaraj³ and C.Rajan⁴

1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

2 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.

3 Department of Mathematics, Arul Anandar College, Karumathur, Madurai, Tamil Nadu, India.

4 Department of Mathematics, Vivekanada College, Thiruvedagam, Madurai, Tamil Nadu, India.

Abstract: The purpose of this paper is to study the concept of quotient maps in ideal topological spaces and study some of its stronger forms.

MSC: 54C08.

Keywords: Ideal topological space, α^* - \mathcal{I} -open or $\alpha^*_{\mathcal{I}}$ -open set, semi*- \mathcal{I} -open set, pre $^*_{\mathcal{I}}$ -open set. © JS Publication.

1. Introduction

Let (X, τ) be a topological space with no separation axioms assumed. For any $A \subseteq X$, cl(A) and int(A) will denote the closure and interior of A in (X, τ) , respectively. Njastad [9] introduced the concept of an α -sets and Mashhour et al. [8] introduced α -continuous maps in topological spaces. The topological notions of semi-open sets and semi-continuity, and preopen sets and precontinuity were introduced by Levine [6] and Mashhour et al. [7] respectively. After advent of these notions, Reilly [11] and Lellis Thivagar [5] obtained many interesting and important results on α -continuity and α -irresolute maps in topological spaces. Lellis Thivagar [5] introduced the concepts of α -quotient maps and α^* -quotient maps in topological spaces. A nonempty collection \mathcal{I} of subsets of a set X is said to be an ideal on X if it satisfies the following two properties:

- (1). $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$;
- (2). $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$. [4]

A topological space (X, τ) with an ideal \mathcal{I} on X is called an ideal topological space (an ideal space) and is denoted by (X, τ, \mathcal{I}) . For an ideal space (X, τ, \mathcal{I}) and a subset $A \subseteq X$, $A^*(\mathcal{I}) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$, is local function [4] of A with respect to \mathcal{I} and τ . It is well known that $cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for a topology τ^* finer than τ [12]. int^{*}(A) will denote the interior of A in (X, τ^*, \mathcal{I}) .

Quite recently, Viswanathan and Jayasudha [13] introduced and studied the notion of $\alpha^* - \mathcal{I}$ -open or $\alpha^*_{\mathcal{I}}$ -open [10] sets. Ekici and Noiri [2] introduced and studied the notion of semi^{*}- \mathcal{I} -open sets. In [3], they studied further properties of semi^{*}- \mathcal{I} -open sets. Ekici [1] introduced and studied the notion of pre^{*}_T-open sets.

 $^{^{*}}$ E-mail: siingam@yahoo.com

In this paper, we introduce new classes of ideal topological maps called $(\mathcal{I}, \mathcal{J})$ - α -quotient maps and $(\mathcal{I}, \mathcal{J})$ - α^* -quotient maps in ideal topological spaces. At every places the new notions have been substantiated with suitable examples.

2. Preliminaries

Definition 2.1 ([10, 13]). A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be α^* - \mathcal{I} -open or $\alpha_{\mathcal{I}}^*$ -open if $A \subseteq int^*(cl(int^*(A)))$.

Definition 2.2 ([2, 3]). A subset K of an ideal topological space (X, τ, \mathcal{I}) is said to be

(1). semi^{*}- \mathcal{I} -open if $K \subseteq cl(int^*(K))$,

(2). $semi^*$ - \mathcal{I} -closed if its complement is $semi^*$ - \mathcal{I} -open.

Definition 2.3 ([1]). A subset G of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1). $pre_{\mathcal{I}}^*$ -open if $G \subseteq int^*(cl(G))$.
- (2). $pre_{\mathcal{I}}^*$ -closed if $X \setminus G$ is $pre_{\mathcal{I}}^*$ -open.

The family of all $\alpha_{\mathcal{I}}^{\star}$ -open [resp. semi^{*}- \mathcal{I} -open, pre^{*}_{\mathcal{I}}-open] sets of (X, τ, \mathcal{I}) is denoted by $\alpha_{\mathcal{I}}^{\star}O(X)$ [resp. semi^{*}- $\mathcal{I}O(X)$, pre^{*}_{\mathcal{I}}O(X)].

Theorem 2.4 ([13]). Let (X, τ, \mathcal{I}) be an ideal topological space. Then, $\alpha_{\mathcal{I}}^* O(X) = semi^* \mathcal{I}O(X) \cap pre_{\mathcal{I}}^* O(X)$.

Remark 2.5 ([13]). For a subset of an ideal topological space, the following holds.

Every open set is $\alpha_{\mathcal{I}}^{\star}$ -open but not conversely.

3. $(\mathcal{I}, \mathcal{J})$ - α -irresolute Maps

Definition 3.1 ([13]). Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a map. Then f is said to be $\alpha^* - \mathcal{I}$ -continuous [resp. semi^{*} - \mathcal{I}-continuous, $pre^*_{\mathcal{I}}$ -continuous] if the inverse image of each open set of Y is $\alpha^* - \mathcal{I}$ -open [resp. semi^{*} - \mathcal{I}-open, $pre^*_{\mathcal{I}}$ -open] in X.

Definition 3.2. A map $f: (X, \tau) \to (Y, \sigma, \mathcal{I})$ is called $\alpha^* \cdot \mathcal{I}$ -open [resp. semi^{*} - \mathcal{I} -open, pre^{*}_{\mathcal{I}}-open, open] if the image of each open set in X is an $\alpha^* \cdot \mathcal{I}$ -open [resp. semi^{*} - \mathcal{I} -open, pre^{*}_{\mathcal{I}}-open, open] set of Y.

Theorem 3.3.

(1). A map $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is $\alpha^* - \mathcal{I}$ -continuous if and only if it is semi^{*} - \mathcal{I}-continuous and $pre^*_{\mathcal{I}}$ -continuous.

(2). A map $f: (X, \tau) \rightarrow (Y, \sigma, \mathcal{I})$ is $\alpha^* - \mathcal{I}$ -open if and only if it is semi^{*} - \mathcal{I} -open and $pre^*_{\mathcal{I}}$ -open.

Definition 3.4. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be a map. Then f is said to be $(\mathcal{I}, \mathcal{J})$ - α -irresolute (resp. $(\mathcal{I}, \mathcal{J})$ -semi-irresolute, $(\mathcal{I}, \mathcal{J})$ -preirresolute) if the inverse image of every α^* - \mathcal{J} -open [resp. semi^*- \mathcal{J} -open, pre $_{\mathcal{J}}^*$ -open] set in Y is an α^* - \mathcal{I} -open [resp. semi^*- \mathcal{I} -open, pre $_{\mathcal{J}}^*$ -open] set in X.

Theorem 3.5. A map $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute if and only if for every semi^{*}- \mathcal{J} -closed subset A of $Y, f^{-1}(A)$ is semi^{*}- \mathcal{I} -closed in X.

Proof. If f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute, then for every semi^{*}- \mathcal{J} -open subset B of Y, $f^{-1}(B)$ is semi^{*}- \mathcal{I} -open in X. If A is any semi^{*}- \mathcal{J} -closed subset of Y, then Y–A is semi^{*}- \mathcal{J} -open. Thus $f^{-1}(Y-A)$ is semi^{*}- \mathcal{I} -open but $f^{-1}(Y-A)=X-f^{-1}(A)$ so that $f^{-1}(A)$ is semi^{*}- \mathcal{I} -closed in X.

Conversely, if, for all semi^{*}- \mathcal{J} -closed subsets A of Y, $f^{-1}(A)$ is semi^{*}- \mathcal{I} -closed in X and if B is any semi^{*}- \mathcal{J} -open subset of Y, then Y–B is semi^{*}- \mathcal{J} -closed. Also $f^{-1}(Y-B)=X-f^{-1}(B)$ is semi^{*}- \mathcal{I} -closed. Thus $f^{-1}(B)$ is semi^{*}- \mathcal{I} -open in X. Hence f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute.

Theorem 3.6. Let f and g be two maps. If $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute and $g : (Y, \sigma, \mathcal{J}) \rightarrow (Z, \mu, \mathcal{K})$ is $(\mathcal{J}, \mathcal{K})$ -semi-irresolute then $gof : (X, \tau, \mathcal{I}) \rightarrow (Z, \mu, \mathcal{K})$ is $(\mathcal{I}, \mathcal{K})$ -semi-irresolute.

Proof. If $A \subseteq Z$ is semi^{*}- \mathcal{K} -open, then $g^{-1}(A)$ is semi^{*}- \mathcal{J} -open set in Y because g is $(\mathcal{J}, \mathcal{K})$ -semi-irresolute. Consequently since f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute, $f^{-1}(g^{-1}(A)) = (gof)^{-1}(A)$ is semi^{*}- \mathcal{I} -open set in X. Hence gof is $(\mathcal{I}, \mathcal{K})$ -semi-irresolute. \Box

Corollary 3.7. If $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ - α -irresolute and $g: (Y, \sigma, \mathcal{J}) \to (Z, \mu, \mathcal{K})$ is $(\mathcal{J}, \mathcal{K})$ - α -irresolute then $gof: (X, \tau, \mathcal{I}) \to (Z, \mu, \mathcal{K})$ is $(\mathcal{I}, \mathcal{K})$ - α -irresolute.

Corollary 3.8. If the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ - α -irresolute and the map $g : (Y, \sigma, \mathcal{J}) \rightarrow (Z, \mu)$ is α^* - \mathcal{J} -continuous then gof : $(X, \tau, \mathcal{I}) \rightarrow (Z, \mu)$ is α^* - \mathcal{I} -continuous.

Corollary 3.9. Let $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ and $g: (Y, \sigma, \mathcal{J}) \rightarrow (Z, \mu)$ be two maps. Then

(1). if f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute and g is semi^{*}- \mathcal{J} -continuous, then gof is semi^{*}- \mathcal{I} -continuous.

(2). if f is $(\mathcal{I}, \mathcal{J})$ -preirresolute and g is $pre_{\mathcal{J}}^*$ -continuous, then gof is $pre_{\mathcal{I}}^*$ -continuous.

Theorem 3.10. If the map $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute and $(\mathcal{I}, \mathcal{J})$ -preirresolute then f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute.

4. $(\mathcal{I}, \mathcal{J})$ - α -quotient Maps

Definition 4.1. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a surjective map. Then f is said to be quotient provided a subset S of Y is open in Y if and only if $f^{-1}(S)$ is open in X.

Definition 4.2. Let $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ be a surjective map. Then f is said to be

(1). an $(\mathcal{I}, \mathcal{J})$ - α -quotient if f is α^* - \mathcal{I} -continuous and $f^{-1}(V)$ is open in X implies V is an α^* - \mathcal{J} -open set in Y.

(2). a $(\mathcal{I}, \mathcal{J})$ -semi-quotient if f is semi^{*}- \mathcal{I} -continuous and $f^{-1}(V)$ is open in X implies V is a semi^{*}- \mathcal{J} -open set in Y.

(3). a $(\mathcal{I},\mathcal{J})$ -prequotient if f is $pre_{\mathcal{I}}^*$ -continuous and $f^{-1}(V)$ is open in X implies V is a $pre_{\mathcal{I}}^*$ -open set in Y.

Example 4.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. We have $\alpha_{\mathcal{I}}^{\star}O(X) = semi^{\star}-\mathcal{I}O(X) = pre^{\star}\mathcal{I}O(X) = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}$. Let $Y = \{p, q, r\}, \sigma = \{\emptyset, Y, \{r\}, \{p, r\}, \{q, r\}\}$ and $J = \{\emptyset, \{p\}\}$. We have $\alpha_{\mathcal{I}}^{\star}O(Y) = semi^{\star}-\mathcal{I}O(Y) = pre^{\star}\mathcal{I}O(Y) = \{\emptyset, Y, \{r\}, \{p, r\}, \{q, r\}\}$.

Define $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ by f(a) = p; f(c) = q; f(c) = r. Since the inverse image of each open in Y is $\alpha^* \cdot \mathcal{I}$ -open in X, clearly f is $\alpha^* \cdot \mathcal{I}$ -continuous and an $(\mathcal{I}, \mathcal{J}) \cdot \alpha$ -quotient map.

Theorem 4.4. If the map $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is surjective, α^* - \mathcal{I} -continuous and α^* - \mathcal{J} -open then f is an $(\mathcal{I}, \mathcal{J})$ - α -quotient map.

Proof. Suppose $f^{-1}(V)$ is any open set in X. Then $f(f^{-1}(V))$ is an α^* - \mathcal{J} -open set in Y as f is α^* - \mathcal{J} -open. Since f is surjective, $f(f^{-1}(V))=V$. Thus V is an α^* - \mathcal{J} -open set in Y. Hence f is $(\mathcal{I}, \mathcal{J})$ - α -quotient map.

Theorem 4.5. If the map $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is open surjective and $(\mathcal{I}, \mathcal{J})$ - α -irresolute, and the map $g: (Y, \sigma, \mathcal{J}) \rightarrow (Z, \mu, \mathcal{K})$ is an $(\mathcal{J}, \mathcal{K})$ - α -quotient then gof: $(X, \tau, \mathcal{I}) \rightarrow (Z, \mu, \mathcal{K})$ is an $(\mathcal{I}, \mathcal{K})$ - α -quotient map.

Proof. Let V be any open set in Z. Since g is $\alpha^* - \mathcal{J}$ -continuous, $g^{-1}(V) \in \alpha^*_{\mathcal{J}}O(Y)$. Since f is $(\mathcal{I}, \mathcal{J}) - \alpha$ -irresolute, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \in \alpha^*_{\mathcal{I}}O(X)$. Thus gof is $\alpha^* - \mathcal{I}$ -continuous. Also suppose $f^{-1}(g^{-1}(V))$ is open set in X. Since f is open, $f(f^{-1}(g^{-1}(V)))$ is open set in Y. Since f is surjective, $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ and since g is $(\mathcal{J}, \mathcal{K}) - \alpha$ -quotient, $V \in \alpha^*_{\mathcal{K}}O(Z)$. Hence gof is an $(\mathcal{I}, \mathcal{K}) - \alpha$ -quotient.

Corollary 4.6. If the map $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is open surjective and $(\mathcal{I}, \mathcal{J})$ -semi- $[(\mathcal{I}, \mathcal{J})$ -pre] irresolute and the map $g : (Y, \sigma, \mathcal{J}) \to (Z, \mu, \mathcal{K})$ is $(\mathcal{J}, \mathcal{K})$ -semi- $[(\mathcal{J}, \mathcal{K})$ -pre] quotient then $gof : (X, \tau, \mathcal{I}) \to (Z, \mu, \mathcal{K})$ is $(\mathcal{I}, \mathcal{K})$ -semi- $[(\mathcal{I}, \mathcal{K})$ -pre] quotient map.

Theorem 4.7. A map $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is an $(\mathcal{I}, \mathcal{J})$ - α -quotient if and only if it is both $(\mathcal{I}, \mathcal{J})$ -semi-quotient and $(\mathcal{I}, \mathcal{J})$ -prequotient.

Proof. Let V be any open set in Y. Since f is $\alpha^* - \mathcal{I}$ -continuous, $f^{-1}(V) \in \alpha_{\mathcal{I}}^* O(X) = \text{semi}^* - \mathcal{I}O(X) \cap \text{pre}_{\mathcal{I}}^* O(X)$. Thus f is both semi^{*}- \mathcal{I} -continuous and pre^{*}_{\mathcal{I}}-continuous. Also suppose $f^{-1}(V)$ is an open set in X. Since f is $(\mathcal{I}, \mathcal{J})$ - α -quotient, $V \in \alpha_{\mathcal{J}}^* O(Y) = \text{semi}^* - \mathcal{J}O(Y) \cap \text{pre}_{\mathcal{J}}^* O(Y)$. Thus V is both semi^{*}- \mathcal{J} -open set and pre^{*}_{\mathcal{J}}-open set in Y. Hence f is both $(\mathcal{I}, \mathcal{J})$ -semi-quotient and $(\mathcal{I}, \mathcal{J})$ -prequotient.

Conversely, since f is both $(\mathcal{I}, \mathcal{J})$ -semi-quotient and $(\mathcal{I}, \mathcal{J})$ -prequotient, f is both semi^{*}- \mathcal{I} -continuous and pre^{*}_{\mathcal{I}}continuous. Hence f is α^* - \mathcal{I} -continuous. Also suppose f⁻¹(V) is an open set in X. By Definition 4.2, V \in semi^{*}- $\mathcal{J}O(Y) \cap \operatorname{pre}^*_{\mathcal{J}}O(Y) = \alpha^*_{\mathcal{J}}O(Y)$. Thus f is $(\mathcal{I}, \mathcal{J})$ - α -quotient.

Definition 4.8.

- (1). Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a surjective and $\alpha^* \mathcal{I}$ -continuous map. Then f is said to be strongly $\mathcal{I} \alpha$ -quotient provided a subset S of Y is open set in Y if and only if $f^{-1}(S)$ is an $\alpha^* \mathcal{I}$ -open set in X.
- (2). Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a surjective and semi^{*}- \mathcal{I} -continuous map. Then f is said to be strongly \mathcal{I} -semi-quotient provided a subset S of Y is open set in Y if and only if $f^{-1}(S)$ is semi^{*}- \mathcal{I} -open set in X.
- (3). Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a surjective and $pre_{\mathcal{I}}^*$ -continuous map. Then f is said to be strongly \mathcal{I} -prequotient provided a subset S of Y is open set in Y if and only if $f^{-1}(S)$ is $pre_{\mathcal{I}}^*$ -open set in X.

Theorem 4.9. If the map $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ is strongly \mathcal{I} -semi-quotient and strongly \mathcal{I} -prequotient then f is strongly \mathcal{I} - α -quotient.

Proof. Since f is both semi^{*}- \mathcal{I} -continuous and pre^{*}_{\mathcal{I}}-continuous, by Theorem 3.3, f is α^* - \mathcal{I} -continuous. Also let V be an open set in Y. By Definition 4.8, $f^{-1}(V) \in \text{semi}^*$ - $\mathcal{I}O(X) \cap \text{pre}^*_{\mathcal{I}}O(X) = \alpha^*_{\mathcal{I}}O(X)$.

Conversely, let $f^{-1}(V) \in \alpha_{\mathcal{I}}^{\star}O(X)$. Then $\alpha_{\mathcal{I}}^{\star}O(X) = \text{semi}^* \cdot \mathcal{I}O(X) \cap \text{pre}_{\mathcal{I}}^{\star}O(X)$. Since f is strongly \mathcal{I} -semi-quotient and strongly \mathcal{I} -prequotient, V is open set in Y. Hence f is strongly \mathcal{I} - α -quotient.

5. $(\mathcal{I}, \mathcal{J})$ - α *-quotient maps

Definition 5.1. Let $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ be a surjective map. Then f is said to be

(1). $(\mathcal{I}, \mathcal{J})$ - α^* -quotient if f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute and $f^{-1}(S)$ is α^* - \mathcal{I} -open set in X implies S is open set in Y.

(2). $(\mathcal{I}, \mathcal{J})$ -semi-*quotient if f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute and $f^{-1}(S)$ is semi*- \mathcal{I} -open set in X implies S is open set in Y.

(3). $(\mathcal{I}, \mathcal{J})$ -pre-*quotient if f is $(\mathcal{I}, \mathcal{J})$ -preirresolute and $f^{-1}(S)$ is pre^{*}_{\mathcal{I}}-open set in X implies S is open set in Y.

Definition 5.2. Let $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ be a map. Then f is said to be strongly $(\mathcal{I}, \mathcal{J})$ - α -open if the image of every α^* - \mathcal{I} -open set in X is an α^* - \mathcal{J} -open set in Y.

Example 5.3. Consider the Example 4.3. Clearly f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute and $(\mathcal{I}, \mathcal{J})$ - α^* -quotient.

Example 5.4. Consider the Example 4.3. Clearly f is strongly $(\mathcal{I}, \mathcal{J})$ - α -open.

Theorem 5.5. Let the map $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be surjective strongly $(\mathcal{I}, \mathcal{J})$ - α -open and $(\mathcal{I}, \mathcal{J})$ - α -irresolute, and the map $g: (Y, \sigma, \mathcal{J}) \to (Z, \mu, \mathcal{K})$ be an $(\mathcal{J}, \mathcal{K})$ - α *-quotient. Then $gof: (X, \tau, \mathcal{I}) \to (Z, \mu, \mathcal{K})$ is an $(\mathcal{I}, \mathcal{K})$ - α *-quotient map.

Proof. Let V be any α^* - \mathcal{K} -open set in Z. Then $g^{-1}(V)$ is an α^* - \mathcal{J} -open set in Y as g is an $(\mathcal{J}, \mathcal{K})$ - α^* -quotient map. Then $f^{-1}(g^{-1}(V))=(gof)^{-1}(V)$ is an α^* - \mathcal{I} -open set in X as f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute. This shows that gof is $(\mathcal{I}, \mathcal{K})$ - α -irresolute. Also suppose $(gof)^{-1}(V)=f^{-1}(g^{-1}(V))$ is an α^* - \mathcal{I} -open set in X. Since f is strongly $(\mathcal{I}, \mathcal{J})$ - α -open, $f(f^{-1}(g^{-1}(V)))$ is an α^* - \mathcal{J} -open set in Y. Since f is surjective, $f(f^{-1}(g^{-1}(V)))=g^{-1}(V)$ is an α^* - \mathcal{J} -open set in Y. Since g is an $(\mathcal{J}, \mathcal{K})$ - α^* -quotient map, V is open in Z. Hence the theorem.

Theorem 5.6. If the map $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is both $(\mathcal{I}, \mathcal{J})$ -semi-*quotient and $(\mathcal{I}, \mathcal{J})$ -pre-*quotient then f is $(\mathcal{I}, \mathcal{J})$ - α *-quotient.

Proof. Since f is both $(\mathcal{I}, \mathcal{J})$ -semi-*quotient and $(\mathcal{I}, \mathcal{J})$ -pre-*quotient, f is $(\mathcal{I}, \mathcal{J})$ -semi-irresolute and $(\mathcal{I}, \mathcal{J})$ -preirresolute. By Theorem 3.10, f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute. Also suppose $f^{-1}(V) \in \alpha_{\mathcal{I}}^* O(X)$. Then $\alpha_{\mathcal{I}}^* O(X)$ =semi*- $\mathcal{I}O(X) \cap \operatorname{pre}_{\mathcal{I}}^* O(X)$. Therefore $f^{-1}(V)$ is semi*- \mathcal{I} -open in X and $f^{-1}(V)$ is pre $_{\mathcal{I}}^*$ -open in X. Since f is $(\mathcal{I}, \mathcal{J})$ -semi-*quotient and $(\mathcal{I}, \mathcal{J})$ -pre-*quotient, by Definition 5.1., V is open set in Y. Thus f is $(\mathcal{I}, \mathcal{J})$ - α *-quotient.

Theorem 5.7. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be a strongly \mathcal{I} - α -quotient and $(\mathcal{I}, \mathcal{J})$ - α -irresolute map and $g: (Y, \sigma, \mathcal{J}) \to (Z, \mu, K)$ be an $(\mathcal{J}, \mathcal{K})$ - α *-quotient map then gof : $(X, \tau, \mathcal{I}) \to (Z, \mu, K)$ is an $(\mathcal{I}, \mathcal{K})$ - α *-quotient.

Proof. Let $V \in \alpha_{\mathcal{K}}^{\star}O(Z)$. Since g is $(\mathcal{J}, \mathcal{K})$ - α -irresolute, $g^{-1}(V) \in \alpha_{\mathcal{J}}^{\star}O(Y)$. Since f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \in \alpha_{\mathcal{I}}^{\star}O(X)$. Thus gof is $(\mathcal{I}, \mathcal{K})$ - α -irresolute. Also suppose $(gof)^{-1}(V) = f^{-1}(g^{-1}(V)) \in \alpha_{\mathcal{I}}^{\star}O(X)$. Since f is strongly \mathcal{I} - α -quotient, $g^{-1}(V)$ is open set in Y. Then $g^{-1}(V) \in \alpha_{\mathcal{J}}^{\star}O(Y)$. Since g is $(\mathcal{J}, \mathcal{K})$ - α^{*} -quotient, V is open set in Z. Hence gof is $(\mathcal{I}, \mathcal{K})$ - α^{*} - \mathcal{I} -quotient.

6. Comparison

Theorem 6.1. Let $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ be a surjective map. Then f is $(\mathcal{I}, \mathcal{J}) - \alpha^*$ -quotient if and only if it is strongly \mathcal{I} - α -quotient.

Proof. Let V be an open set in Y. Then $V \in \alpha_{\mathcal{J}}^* O(Y)$. Since f is $(\mathcal{I}, \mathcal{J})$ - α^* -quotient, $f^{-1}(V) \in \alpha_{\mathcal{I}}^* O(X)$. Conversely, let $f^{-1}(V) \in \alpha_{\mathcal{I}}^* O(X)$. Since f is $(\mathcal{I}, \mathcal{J})$ - α^* -quotient, V is open set in Y. Hence f is strongly \mathcal{I} - α -quotient map.

Conversely, let V be an open set in Y. Then $V \in \alpha_{\mathcal{J}}^* O(Y)$. Since f is strongly \mathcal{I} - α -quotient, $f^{-1}(V) \in \alpha_{\mathcal{I}}^* O(X)$. Thus f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute. Also since f is strongly \mathcal{I} - α -quotient, $f^{-1}(V) \in \alpha_{\mathcal{I}}^* O(X)$ implies V is open set in Y. Hence f is $(\mathcal{I}, \mathcal{J})$ - α^* -quotient map.

Theorem 6.2. If the map $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is quotient then it is $(\mathcal{I}, \mathcal{J})$ - α -quotient.

Proof. Let V be an open set in Y. Since f is quotient, $f^{-1}(V)$ is open set in X and $f^{-1}(V) \in \alpha_{\mathcal{I}}^{\star}O(X)$. Hence f is $\alpha^{\star} - \mathcal{I}$ continuous. Suppose $f^{-1}(V)$ is an open set in X. Since f is quotient, V is open set in Y. Then $V \in \alpha_{\mathcal{J}}^{\star}O(Y)$. Hence f is $(\mathcal{I}, \mathcal{J}) - \alpha$ -quotient map.

Theorem 6.3. If the map $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J})$ - α -irresolute then it is α^* - \mathcal{I} -continuous.

Proof. Let A be open set in Y. Then $A \in \alpha_{\mathcal{J}}^* O(Y)$. Since f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute, $f^{-1}(A) \in \alpha_{\mathcal{I}}^* O(X)$. It shows that f is α^* - \mathcal{I} -continuous map.

Theorem 6.4. If the map $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ is $(\mathcal{I}, \mathcal{J}) - \alpha^*$ -quotient then it is $(\mathcal{I}, \mathcal{J}) - \alpha$ -quotient.

Proof. Let f be $(\mathcal{I}, \mathcal{J})$ - α^* -quotient. Then f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute. We have f is α^* - \mathcal{I} -continuous. Also suppose f⁻¹(V) is an open in X. Then f⁻¹(V) $\in \alpha_{\mathcal{I}}^*O(X)$. By assumption, V is open set in Y. Therefore $V \in \alpha_{\mathcal{J}}^*O(Y)$. Hence f is $(\mathcal{I}, \mathcal{J})$ - α -quotient. \Box

Theorem 6.5. Every $(\mathcal{I}, \mathcal{J})$ - α *-quotient map is $(\mathcal{I}, \mathcal{J})$ - α -irresolute.

Proof. We obtain it from Definition 5.1.

Theorem 6.6. Every $(\mathcal{I}, \mathcal{J})$ - α -quotient map is α^* - \mathcal{I} -continuous.

Proof. We obtain it from Definition 4.2.

Remark 6.7. The converses of Theorems 4.9 and 5.6 are not true as per the following example.

Example 6.8. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}, Y = \{p, q, r\}, \sigma = \{\emptyset, Y, \{r\}, \{p, r\}\}, \mathcal{I} = \{\emptyset, \{b\}, \{a, b\}\}$ and $\mathcal{J} = \{\emptyset, \{q\}, \{p, q\}\}$. Define $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ by f(a) = p; f(b) = q and f(c) = r. Clearly f is $\alpha^*\mathcal{I}$ -continuous and strongly \mathcal{I} - α -quotient. Since $f^{-1}(\{q, r\}) = \{b, c\} \in semi^*\mathcal{I}O(X)$ and $\{q, r\}$ is not open set in Y, f is not strongly \mathcal{I} -semi-quotient. Moreover f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute, $(\mathcal{I}, \mathcal{J})$ - α^* -quotient and $(\mathcal{I}, \mathcal{J})$ -semi-irresolute. Since $f^{-1}(\{q, r\}) = \{b, c\} \in semi^*\mathcal{I}O(X)$ and $\{q, r\}$ is not open set in Y, f is not $(\mathcal{I}, \mathcal{J})$ - α^* -quotient.

Remark 6.9. The converses of Theorems 6.4 and 6.5 are not true as per the following example.

Example 6.10. Consider the Example 6.8. Clearly f is $(\mathcal{I}, \mathcal{J})$ - α -irresolute and $(\mathcal{I}, \mathcal{J})$ - α -quotient maps. Since $f^{-1}(\{q, r\}) = \{b, c\} \in \alpha_{\mathcal{I}}^* O(X)$ and $\{p, q\}$ is not open set in Y, f is neither strongly \mathcal{I} - α -quotient nor $(\mathcal{I}, \mathcal{J})$ - α^* -quotient.

Remark 6.11. The converse of Theorem 6.2 is not true and a strongly \mathcal{I} - α -quotient map need not be quotient as per the following example.

Example 6.12. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}, Y = \{p, q, r\}, \sigma = \{\emptyset, Y, \{p\}, \{p, q\}, \{p, r\}\}, \mathcal{I} = \{\emptyset\} and \mathcal{J} = \{\emptyset\}.$ Define $f: (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ by f(a) = p, f(b) = q and f(c) = r. Clearly f is $(\mathcal{I}, \mathcal{J}) - \alpha$ -quotient and strongly $\mathcal{I} - \alpha$ -quotient map. Since $f^{-1}(\{p, q\}) = \{a, b\}$ is not open in X where $\{p, q\}$ is open in Y, f is not quotient map.

Remark 6.13. A quotient map need not be strongly \mathcal{I} - α -quotient as per the following example.

Example 6.14. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$, $Y = \{p, q, r\}$, $\sigma = \{\emptyset, Y, \{p\}, \{p, q\}\}$ and $\mathcal{I} = \{\emptyset\}$. Define $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ by f(a) = p; f(b) = q and f(c) = r. Clearly f is quotient but not strongly $\mathcal{I} - \alpha$ -quotient map.

Remark 6.15. The converses of Theorems 6.3 and 6.6 are not true as per the following example.

Example 6.16. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, Y = \{p, q, r\}, \sigma = \{\emptyset, Y, \{r\}, \{p, r\}\}, \mathcal{I} = \{\emptyset, \{b\}, \{a, b\}\}$ and $\mathcal{J} = \{\emptyset, \{q\}, \{p, q\}\}$. Define $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma, \mathcal{J})$ by f(a) = p; f(b) = q and f(c) = r. Clearly f is $\alpha^* \cdot \mathcal{I}$ -continuous. Since $f^{-1}(\{q, r\}) = \{b, c\} \notin \alpha_{\mathcal{I}}^* O(X)$ where $\{q, r\} \in \alpha_{\mathcal{J}}^* O(Y)$, f is not $(\mathcal{I}, \mathcal{J}) \cdot \alpha$ -irresolute. Also, since $f^{-1}(\{q\}) = \{b\}$ is open in X where $\{q\} \notin \alpha_{\mathcal{J}}^* O(Y)$, f is not $(\mathcal{I}, \mathcal{J}) \cdot \alpha$ -quotient map.

Remark 6.17. We obtain the following diagram from the above discussions.

Where A→B means that A does not necessarily imply B and, moreover,

- (1) = $(\mathcal{I}, \mathcal{J})$ - α -irresolute map.
- (2) = $(\mathcal{I}, \mathcal{J})$ - α^* -quotient map.
- (3) = strongly \mathcal{I} - α -quotient map.
- (4) = $\alpha^* \mathcal{I}$ -continuous map.
- (5) = $(\mathcal{I}, \mathcal{J})$ - α -quotient map.
- (6) =quotient map.

References

- E.Ekici, On AC_I-sets, BC_I-sets, β^{*}_I-open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(1)(2011), 47-54.
- [2] E.Ekici and T.Noiri, *-hyperconnected ideal topological spaces, Analele Stiintifice Ale Universitatii Al I. Cuza Din Iasi -Serie Noua-Matematica, Tomul LVIII, 1(2012), 121-129.
- [3] E.Ekici and T.Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar. 122(1-2)(2009), 81-90.
- [4] K.Kuratowski, Topology, Vol. I, Academic Press, New York, (1966).
- [5] M.Lellis Thivagar, A note on quotient mappings, Bull. Malaysian Math. Sci. Soc. (Second series), 14(1991), 21-30.
- [6] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [7] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [8] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar., 41(1983), 213-218.
- [9] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [10] O.Ravi, K.M.Dharmalingam, M.Meharin and P.Santhi, On $I_{\pi g \alpha^{\star}}$ -closed sets in ideal topological spaces, Journal of New Theory, 2(2015), 55-62.

- [11] I.L.Reilly and M.K.Vamanamurthy, On α -continuity in topological spaces, Acta Math. Hungar., 45(1-2)(1985), 27-32.
- [12] R.Vaidyanathaswamy R, Set topology, Chelsea Publishing Company, New York, (1960).
- [13] K.Viswanathan and J.Jayasudha, Some new sets and decompositions of α^* - \mathcal{I} -continuity and A_{IR} -continuity via idealization, Malaya J. Matematik, S(1)(2013), 17-23.