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1. Introduction

A simple model equation is the Korteweg-de Vries (KdV) equation [4]

vt + 6vvx + δvxxx = 0 , (1)

which describe the long waves in shallow water. Its modified version is,

ut − 6u2
ux + uxxx = 0 (2)

and again there is Miura transformation [5]

v = u
2 + ux , (3)

between the KdV equation (1) and its modified version (2). In 2002, Liu and Yang [4] studied the bifurcation properties of

generalized KdV equation (GKdVE)

ut + au
n
ux + uxxx = 0 , a ∈ R , n ∈ Z

+
. (4)
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Gungor and Winternitz [8] transformed the Generalized Kadomtsev-Petviashvili Equation (GKPE)

(ut + p(t)uux + q(t)uxxx)x + σ(y, t)uyy + a(y, t)uy + b(y, t)uxy + c(y, t)uxx + e(y, t)ux + f(y, t)u+ h(y, t) = 0 , (5)

to its canonical form and established conditions on the coefficient functions under which (5) has an infinite dimensional sym-

metry group having a Kac-Moody-Virasoro structure. In [8], they carried out the symmetry analysis of Variable Coefficient

Kadomtsev Petviashvili Equation (VCKP) in the form,

(ut + f(x, y, t)uux + g(x, y, t)uxxx)x + h(x, y, t)uy = 0 .

In this paper, we discuss the symmetry analysis of the (2+1)-dimensional KdV equation

(ut + u+ u
3
ux + αuxxx)x + βuyy = 0 , where α, β ∈ R . (6)

Our intention is to show that equation (6) admits a four-dimensional symmetry group and determine the corresponding

Lie algebra, classify the one- and two-dimensional subalgebras of the symmetry algebra of (6) in order to reduce (6) to

(1+1)-dimensional PDEs and then to ODEs. It is shown that (6) reduces to a once differentiated KdV equation and to a

linear PDE wss(r, s) = 0. We shall establish that the symmetry generators form a closed Lie algebra and this allowed us

to use the recent method due to Ahmad, Bokhari, Kara and Zaman [? ] to successively reduce (6) to (1+1)-dimensional

PDEs and ODEs with the help of two-dimensional Abelian and non-Abelian solvable subalgebras. This paper is organised

as follows: In section 2, we determine the symmetry group of (6) and write down the associated Lie algebra. In section 3, we

consider all one-dimensional subalgebras and obtain the corresponding reductions to (1+1)-dimensional PDEs. In section

4, we show that the generators form a closed Lie algebra and use this fact to reduce (6) successively to (1+1)- dimensional

PDEs and ODEs. In section 5, we summarises the conclusions of the present work.

2. The Symmetry Group and Lie Algebra of (ut + u+ u3ux + αuxxx)x +
βuyy = 0.

If (6) is invariant under a one parameter Lie group of point transformations (Bluman and Kumei [3], Olver [2])

x
∗ = x+ ǫ ξ(x, y, t;u) +O(ǫ2) , (7)

y
∗ = y + ǫ η(x, y, t;u) +O(ǫ2) , (8)

t
∗ = t+ ǫ τ(x, y, t;u) +O(ǫ2) , (9)

u
∗ = u+ ǫ φ(x, y, t;u) +O(ǫ2) , (10)

with infinitesimal generator

X = ξ(x, y, t;u)
∂

∂x
+ η(x, y, t;u)

∂

∂y
+ τ(x, y, t;u)

∂

∂t
+ φ(x, y, t;u)

∂

∂u
(11)

then the invariant condition is

φ
x + 6uφu2

x + 6u2
uxφ

x + φ
xt + 3u2

φuxx + u
3
φ
xx + βφ

yy + αφ
xxxx = 0. (12)
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In order to determine the four infinitesimals ξ, η, τ and φ, we prolong V to fourth order. This prolongation is given by the

formula

V
(4) = V + φ

x ∂

∂ux

+ φ
y ∂

∂uy

+ φ
t ∂

∂ut

+ φ
xx ∂

∂uxx

+ φ
xy ∂

∂uxy

+ φ
xt ∂

∂uxt

+φ
yy ∂

∂uyy

+ φ
yt ∂

∂uyt

+ φ
tt ∂

∂utt

+ φ
xxx ∂

∂uxxx

+ φ
xyy ∂

∂uxyy

+φ
xxy ∂

∂uxxy

+ φ
xtt ∂

∂uxtt

+ φ
xyt ∂

∂uxyt

+ φ
yyy ∂

∂uyyy

+ φ
ttt ∂

∂uttt

+φ
xxt ∂

∂uxxt

+ φ
yyt ∂

∂uyyt

+ φ
ytt ∂

∂uytt

+ φ
xxxx ∂

∂uxxxx

+ · · ·+ φ
tttt ∂

∂utttt

. (13)

In the above expression every coefficient of the prolonged generator is a function of x, y, t and u can be determined by the

formulae,

φ
i = Di(φ− ξux − ηuy − τut) + ξux,i + ηuy,i + τut,i , (14)

φ
ij = DiDj(φ− ξux − ηuy − τut) + ξux,ij + ηuy,ij + τut,ij , (15)

φ
ijkl = DiDjDkDl(φ− ξux − ηuy − τut) + ξux,ijkl + ηuy,ijkl + τut,ijkl , (16)

where Di represents total derivative and subscripts of u derivative with respect to the respective coordinates. To proceed

with reductions of Equation (6) we now use symmetry criterion for PDEs. For given equation this criterion is expressed by

the formula V (4)[ux +3u2u2
x +uxt +u3uxx + βuyy +αuxxxx] = 0, whenever, ux +3u2u2

x +uxt +u3uxx + βuyy +αuxxxx = 0.

In (12), we introduced the following quantities:

φ
x = Dx(φ− ξux − ηuy − τut) + ξuxx + ηuyx + τutx

= φx + (φu − ξx)ux − ηxuy − τxut − ξuu
2
x − ηuuxuy − τuuxut ,

φ
xx = DxDx(φ− ξux − ηuy − τut) + ξuxxx + ηuyxx + τutxx

= φxx + (2φxu − ξxx)ux − ηxxuy − τxxut + (φu − 2ξx)uxx − 2ηxuxy

−2τxuxt + (φuu − 2ξux)u
2
x − 2ηuxuxuy − 2τxuuxut − ξuuu

3
x

−3ξuuxuxx − ηuuu
2
xuy − τuuu

2
xut − 2ηuuxuxy − ηuuxxuy − τuuxxut − 2τuuxuxt ,

φ
yy = DyDy(φ− ξux − ηuy − τut) + ξuxyy + ηuyyy + τutyy

= φyy − ξyyux + (2φyu − ηyy)uy − τyyut − 2ξyuxy + (φu − 2ηy)uyy

−2ξyuuxuy − 2τyuuyut + (φuu − 2ηyu)u
2
y − 2τyuyt − 2ξuuyuxy

−3ηuuyuyy − ξuuu
2
yux − ξuuyyux − ηuuu

3
y − 2τuuyuyt − τuuyyut − τuuu

2
yut ,

φ
xt = DxDt(φ− ξux − ηuy − τut) + ξuxxt + ηuxyt + τuxtt

= φxt + (φtu − ξxt)ux − ηxtuy + (φxu − τxt)ut + (φuu − ξxu − τut)uxut

+(φu − ξx − τt)uxt − ξtuu
2
x − τxuu

2
t − ξtuxx − ξuuu

2
xut − ξuuxxut

−2ξuuxuxt − ηtuuxuy − ηtuxy − ηxuuyut − ηxuyt − ηuuuxuyut

−ηuuxyut − ηuuyuxt − ηuuxuyt − τuuuxu
2
t − 2τuutuxt − τxutt − τuuxutt ,

φ
xxxx = DxDxDxDx(φ− ξux − ηuy − τut) + ξuxxxxx + ηuyxxxx + τutxxxx

✸
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φ
xxxx = φxxxx + (4φxxxu − ξxxxx)ux + (6φxxu − 4ξxxx)uxx + (6φxxuu − 4ξxxxu)u

2
x

+(4φuuux − 6ξxxuu)u
3
x + (φuuuu − 4ξxuuu)u

4
x + (12φxuu − 18ξxxu)uxuxx

+(6φuuu − 24ξxuu)u
2
xuxx + (3φuu − 12ξxu)u

2
xx + (4φxu − 6ξxx)uxxx

+(4φuu − 16ξxu)uxuxxx + (φu − 4ξx)uxxxx − ξuuuuu
5
x − 10ξuuuu

3
xuxx

−15ξuuuxu
2
xx − 10ξuuu

2
xuxxx − 10ξuuxxuxxx − 5ξuuxuxxxx − ηxxxxuy

−τxxxxut − 4ηxxxuuxuy − 4ηxxxuxy − (12ηxxu + 12ηxu)uxuxy

−6ηxxuuu
2
xuy − 4ηxuuuu

3
xuy − ηuuuuu

4
xuy − 12ηxuuu

2
xuxy − 4ηuuuu

3
xuxy

−6ηxxuuxxuy − 12ηxuuuxuyuxx − 6ηuuuu
2
xuyuxx − 3ηuuuyu

2
xx

−12ηuuuxuxyuxx − 4ηuxuxxxuy − 4ηuuuxuyuxx − ηuuxxxxuy

−4ηuuxxxuxy − 12ηxuuxxuxy − 6ηxxuxxy − 6ηuuu
2
xuxxy − 6ηuuxxuxxy

−4ηxuxxxy − 4ηuuxuxxxy − 4τxxxuuxut − 4τxxxuxt − 12τxxuuxuxt

−6τxxuuu
2
xut − 4τxuuuu

3
xut − τuuuuu

4
xut − 12τxuuu

2
xuxt − 4τuuuu

3
xuxt

−6τxxuuxxut − 12τxuuuxuxxut − 6τuuuu
2
xuxxut − 3τuuu

2
xxut

−4τxuuxxxut − 4τuuuxuxxxut − τuuxxxxut − 4τuuxxxuxt − 12τxuuxxuxt

−12τuuuxuxxuxt − 6τxxuxxt − 12τxuuxuxt − 6τuuu
2
xuxxt − 6τuuxxuxxt

−4τxuxxxt − 4τuuxuxxxt .

Substitute them in Equation (12) and then compare coefficients of various monomials in derivatives of ‘u’. This yields the

following equations:

ξu = 0 ,

ηu = 0 ,

τu = 0 ,

φuu = 0 ,

τy = 0 ,

ηx = 0 ,

τx = 0 ,

φxu = 0 ,

ξxx = 0 ,

0 = φx + φxt + u
3
φxx + βφyy + αφxxxx ,

0 = τt + 6u2
φx − ξxt − βξyy + φtu + 4αφxxxu ,

0 = 3u2
φ− ξt − u

3
ξx + u

3
τt + 6αφxxu ,

0 = 2φ− uξx + uτt + uφu ,

0 = ξx − 2ηy + τt ,

τt = 3ξx ,

ηyy = 2φyu ,

ηt = −2βξy .
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After some simplifications, we get, the following PDEs,

τ = τ(t) , (17)

ηx = ξu = ηu = 0 , (18)

ξ = g(y, t)x+ h(y, t) , (19)

φxu = φuu = 0 , (20)

0 = φx + φxt + u
3
φxx + βφyy + αφxxxx , (21)

0 = τt + 6u2
φx − ξxt − βξyy + φtu + 4αφxxxu , (22)

0 = 3u2
φ− ξt − u

3
ξx + u

3
τt + 6αφxxu , (23)

0 = 2φ− uξx + uτt + uφu , (24)

0 = ξx − 2ηy + τt , (25)

τt = 3ξx , (26)

ηyy = 2φyu , (27)

ηt = −2βξy . (28)

Using the above equations and some more manipulations, we get,

ξ = k3 + k4y , (29)

η = k1 − 2k4tβ , (30)

τ = k2 , (31)

φ = 0 . (32)

At this stage, we construct the symmetry generators corresponding to each of the constants involved. These are a total of

four generators given by

V1 =
∂

∂y
,

V2 =
∂

∂t
,

V3 =
∂

∂x
,

V4 = y
∂

∂x
− 2tβ

∂

∂y
. (33)

The one-parameter groups gi(ǫ) generalized by the Vi, where i=1, 2, 3, 4, are

g1(ǫ) : (x, y, t;u) → (x, y + ǫ, t, u) ,

g2(ǫ) : (x, y, t;u) → (x, y, t+ ǫ, u) ,

g3(ǫ) : (x, y, t;u) → (x+ ǫ, y, t, u) ,

g4(ǫ) : (x, y, t;u) → (x+ yǫ, y − 2tβǫ, t, u) ,

where exp(ǫVi) (x, y, t;u) = (x̄, ȳ, t̄; ū) and

(i) g2 is time translation ,

(ii) g1, g3 and g4 are the space-invariant of the equation. The symmetry generators found in Equation (33) form a closed

Lie Algebra whose commutation table is shown below.

✺
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[Vi, Vj ] V1 V2 V3 V4

V1 0 0 0 V3

V2 0 0 0 −2βV1

V3 0 0 0 0

V4 −V3 2βV1 0 0

Table 1. Commutation relations satisfied by above generators is

The commutation relations of the Lie algebra, determined by V1, V2, V3 and V4 are shown in the above table. These vector

fields form a Lie algebra L by:

[V1, V4] = V3 , [V2, V4] = −2βV1 .

For this four-dimensional Lie algebra the commutator table for Vi is a (4 ⊗ 4) table whose (i, j)th entry expresses the Lie

Bracket [Vi, Vj ] given by the above Lie algebra L. The table is skew-symmetric and the diagonal elements all vanish. The

coefficient Ci,j,k is the coefficient of Vi of the (i, j)th entry of the commutator table and the related structure constants can

be easily calculated from above table are as follows:

C1,4,3 = 1 , C2,4,1 = −2β .

The Lie algebra L is solvable. The radical of G is ,

R =< V3 > ⊕ < V1, V2, V4 >.

In the next section, we derive the reduction of (6) to PDEs with two independent variables and ODEs. These are four

one-dimensional Lie subalgebras

Ls,1 = {V1} , Ls,2 = {V2} , Ls,3 = {V3} , Ls,4 = {V4}

and corresponding to each one-dimensional subalgebras we may reduce (6) to a PDE with two independent variables. Further

reductions to ODEs are associated with two-dimensional subalgebras. It is evident from the commutator table that there

are no two-dimensional solvable non-abelian subalgebras. And there are four two-dimensional Abelian subalgebras, namely,

LA,1 = {V1, V2} , LA,2 = {V1, V3} , LA,3 = {V2, V3} , LA,4 = {V3, V4} .

3. Reductions of(ut+u+u3ux+αuxxx)x+ βuyy = 0 by One-Dimensional
Subalgebras

Case 1 : V1 = ∂y .

The characteristic equation associated with this generator is

dx

0
=

dy

1
=

dt

0
=

du

0
.

We integrate the characteristic equation to get three similarity variables,

x = s, t = r and u = w(r, s) . (34)

6
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Using these similarity variables in Equation (6) can be recast in the form

ws + 3w2
w

2
s + wsr + w

3
wss + αwssss = 0 . (35)

Case 2 : V2 = ∂t .

The characteristic equation associated with this generator is

dx

0
=

dy

0
=

dt

1
=

du

0
.

Following standard procedure we integrate the characteristic equation to get three similarity variables,

x = s, y = r and u = w(r, s) . (36)

Using these similarity variables in Equation (6) can be recast in the form

ws + 3w2
w

2
s + w

3
wss + βwrr + αwssss = 0 . (37)

Case 3 : V3 = ∂x .

The characteristic equation associated with this generator is

dx

1
=

dy

0
=

dt

0
=

du

0
.

Following standard procedure we integrate the characteristic equation to get three similarity variables,

y = s, t = r and u = w(r, s) . (38)

Using these similarity variables in Equation (6) can be recast in the form

βwss = 0 . (39)

Case 4 : V4 = y∂x − 2tβ∂y .

The characteristic equation associated with this generator is

dx

y
=

dy

−2tβ
=

dt

0
=

du

0
.

Following standard procedure we integrate the characteristic equation to get three similarity variables,

s = −(y2 + 4rβx), t = r and u = w(r, s) . (40)

Using these similarity variables in Equation (6) can be recast in the form

4rβws = 48w2
wssr

2
β
2 − 4wsrβ

′ − 4sβwss + 16w3
wssr

2
β
2 − 6βws

+256r4β4
αwssss . (41)

✼
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4. Reductions of(ut+u+u3ux+αuxxx)x+βuyy = 0 by Two-Dimensional
Subalgebras

Case I : Reduction under V1 and V2 .

From Table 1 we find that the given generators commute [V1, V2] = 0. Thus either of V1 or V2 can be used to

start the reduction with. For our purpose we begin reduction with V1. Therefore we get Equation (34) and Equation (35).

At this stage, we express V2 in terms of the similarity variables defined in (34). The transformed V2 is

Ṽ2 = ∂r .

The characteristic equation for Ṽ2 is

ds

0
=

dr

1
=

dw

0
.

Integrating this equation as before leads to new variables

s = γ and w = k(γ),

which reduce Equation (35) to a fourth-order ODE

k
′ + 3k2

k
′2 + k

3
k
′′ + αk

′′′′ = 0 . (42)

Case II : Reduction under V1 and V3 .

From Table 1 we find that the given generators commute [V1, V3] = 0. Thus either of V1 or V3 can be used to

start the reduction with. For our convenience we begin reduction with V3. Therefore we get Equation (38) and Equation

(39). At this stage, we express V1 in terms of the similarity variables defined in Equation (38). The transformed V1 is

Ṽ1 = ∂s .

The characteristic equation for Ṽ1 is

ds

1
=

dr

0
=

dw

0
.

Integrating this equation as before leads to new variables

r = γ and w = k(γ) .

It follows that Equation (39) is satisfied. So, now reduction start with V1. Therefore we get Equation (34) and Equation

(35). At this stage, we express V2 in terms of the similarity variables defined in Equation (34). The transformed V3 is

Ṽ3 = ∂s .

Similarly of above procedure, Equation (35) is satisfied.

Case III : Reduction under V2 and V3 .

In this case the two symmetry generators V2 and V3 satisfy the commutation relation [V2, V3] = 0. This suggests

that reduction in this case should start with V3. The similarity variables are

8
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y = s, t = r and u = w(r, s).

The corresponding reduced PDE is

βwss = 0 .

The transformed V2 is

Ṽ2 = ∂r .

The invariants of Ṽ2 are

s = γ and w = k(γ) ,

which reduce Equation (39) to the ODE

βk
′′ = 0 . (43)

Case IV : Reduction under V3 and V4 .

In this case the two symmetry generators V3 and V4 satisfy the commutation relation [V3, V4] = 0. This suggests

that reduction in this case should start with V3. Therefore we get Equation (38) and Equation (39). The transformed V4 is

Ṽ4 = −2rβ∂s .

The invariants of Ṽ4 are

r = γ and w = k(γ) .

It follows that Equation (39) is satisfied. So, now reduction start with V4. Therefore we get Equation (40) and Equation

(41). Now transforming V3 in these new variables is given by

Ṽ3 = −4rβ∂s .

The invariants of Ṽ3 are

r = γ and w = k(γ) .

In these variables Equation (41) is satisfied.

Algebra Reduction

[V1, V2] = 0 k′ + 3k2k′2 + k3k′′ + αk′′′′ = 0

[V1, V3] = 0 Satisfy the Equation

[V2, V3] = 0 βk′′ = 0

[V3, V4] = 0 Satisfy the Equation

5. Conclusions

In this Paper,

(1). A (2+1)-dimensional KdV equation (ut+u+u3ux+αuxxx)x+βuyy = 0 where α, β ∈ R, is subjected to Lie’s classical

method.

✾
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(2). Equation (6) admits a four-dimensional symmetry group.

(3). It is established that the symmetry generators form a closed Lie algebra.

(4). Classification of symmetry algebra of (6) into one- and two-dimensional subalgebras is carried out.

(5). Systematic reduction to (1+1)-dimensional PDE and then to first- or second order ODEs are performed using one-

dimensional and two-dimensional solvable Abelian subalgebras.
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