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1. Introduction

A simple model equation is the Korteweg-de Vries (KdV) equation [4]

vt + 60V, + OVzze =0, (1)

which describe the long waves in shallow water. Its modified version is,

wur — 6u Uy + Usgs = 0 (2)

and again there is Miura transformation [5]
v=1u’+u, , 3)
between the KdV equation (1) and its modified version (2). In 2002, Liu and Yang [4] studied the bifurcation properties of

generalized KdV equation (GKdVE)

up + au"uy + Ugee =0, a ER, n € ZT . (4)
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Gungor and Winternitz [8] transformed the Generalized Kadomtsev-Petviashvili Equation (GKPE)
(ut + p(t)qu + Q(t)U’EII)I + U(yv t)Uyy + Cb(y, t)Uy + b(y7 t)uIy + C(y, t)uzz + e(yv t)uz + f(ya t)u + h’(y7 t) =0 ) (5)

to its canonical form and established conditions on the coefficient functions under which (5) has an infinite dimensional sym-
metry group having a Kac-Moody-Virasoro structure. In [8], they carried out the symmetry analysis of Variable Coefficient

Kadomtsev Petviashvili Equation (VCKP) in the form,
(us + [y, uue + g(2, Y, ) uawe)e + h(z, y,)uy =0 .
In this paper, we discuss the symmetry analysis of the (2+1)-dimensional KdV equation
(ut + v+ vty 4+ Qges)e + Buyy =0, wherea, 8 €R. (6)

Our intention is to show that equation (6) admits a four-dimensional symmetry group and determine the corresponding
Lie algebra, classify the one- and two-dimensional subalgebras of the symmetry algebra of (6) in order to reduce (6) to
(141)-dimensional PDEs and then to ODEs. It is shown that (6) reduces to a once differentiated KdV equation and to a
linear PDE wss(r, s) = 0. We shall establish that the symmetry generators form a closed Lie algebra and this allowed us
to use the recent method due to Ahmad, Bokhari, Kara and Zaman [? | to successively reduce (6) to (1+1)-dimensional
PDEs and ODEs with the help of two-dimensional Abelian and non-Abelian solvable subalgebras. This paper is organised
as follows: In section 2, we determine the symmetry group of (6) and write down the associated Lie algebra. In section 3, we
consider all one-dimensional subalgebras and obtain the corresponding reductions to (1+1)-dimensional PDEs. In section
4, we show that the generators form a closed Lie algebra and use this fact to reduce (6) successively to (141)- dimensional

PDEs and ODEs. In section 5, we summarises the conclusions of the present work.

2. The Symmetry Group and Lie Algebra of (u; +u + wuy + QUgyr)z +
By, = 0.

If (6) is invariant under a one parameter Lie group of point transformations (Bluman and Kumei [3], Olver [2])

& = z+eé(n,y tu)+O0(E), (M)
v© = y+en(zy tiu)+0(€), (8)
t° = t+er(z,ytu)+O0(), 9)
u = u4e o,y t;u) + O(2) (10)
with infinitesimal generator

X = € pntin) 5 ey ti) o+ gt g+ 0t ()

then the invariant condition is
B + 6ugu’ + 6uusd” + ¢°F + 3u Puas + u2P"" + LYY + ap™""" = 0. (12)
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In order to determine the four infinitesimals £, 7, 7 and ¢, we prolong V to fourth order. This prolongation is given by the

formula

V(4)

= V+ wa%z + ¢ya%, + ‘bta% + ™" afm + qu-”aiy + ¢™ ait
+¢yyauiyy + o afyt +9" ait +o7 auiz o au{iyy
+¢xxy8uim N ¢xttauim 4o auazyt 4 Uy 8uayyy 4 gttt éh?m
+¢”tauim + qsyyta%w + ¢V afytt + ¢ (%fm +o+ qb““auitm :

(13)

In the above expression every coefficient of the prolonged generator is a function of x,y,t and u can be determined by the

formulae,

¢

' Di(¢ — Eus — nuy — Tut) + Ui + NUy,i + TUL;

DiDj(¢ — Eux — quy — Tut) + Eua,ij + Nty,ij + Tutij

¢ = DiDjDDi(¢ — Eup — Ny — TUL) + Etg ijht + My, ijrl + TUL KL

where D; represents total derivative and subscripts of u derivative with respect to the respective coordinates. To proceed

with reductions of Equation (6) we now use symmetry criterion for PDEs. For given equation this criterion is expressed by

the formula V® [ue + 3uu2 + U + v uge + Buyy + QUzzez] = 0, whenever, u, + 3u?u2 4 uat + wiugs + Buyy + QUgzes = 0.

In (12), we introduced the following quantities:

o =

¢zz —

Y =

(,bZt —

¢zzzz _

Da(p — Eug — Ny — TUs) + Elas + Niye + Tlie

o + (Pu = Ex)ta — Moty — Tatts — €z — Tulially — TullalUs |
D;Dy(¢p — Euz — nuy — Tut) + EUgzs + NUyze + TUtza

bzz + (2020 — xa)tle — Nazlly — TaoUs + (Pu — 28a)Usa — 2NxUay
—273 Uzt + (Puu — 2§uz)ui — MugUgly — 2TpyUpUs — fuuui

—3EuUaUzr — Nuulaly — TuuUrUe — 2NuUslay — Nulasly — Tullsals — 2TulsUst ,
DyDy(¢ — Eue — nuy — Tut) + EUayy + Nyyy + TUiyy

byy — EyyUa + (2050 — Myy)uy — Tyytt — 2§yUay + (Pu — 27y )uyy

—28yu sty — 2TyuUyUs + (Puu — 277yu)u32/ — 2TyUyt — 28uUyUay

— 3N Uy Uyy — guuuguz — LulyyUy — nuuui — 2Ty Uy Uyt — TuUyyUs — Tuuuiut )
DyDi(¢p — Eus — Nuy — Tut) + Eaat + Nyt + TUgtt

Gt + (Dt — Eat)Uz — Natty + (Pou — Tat)Ut + (Puu — Exu — Tut ) Uz Uy

(G — Ex — Te)Ust — Erutis — Toutly — Etlips — Euu oty — Eylps s

=28 Uz Uzt — Neulaly — Ntlay — Nzulylt — NalUyt — NuulzUyUs

Uy Ut — Ty Uy Uit — T Up Uyt — T Uty — 2Ty U Uit — Tt — T U st

DzDzDzDz (()ZS - fuz - nuy - Tut) + §uzzzzz + nuyzzzz + TUtzzre
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TTTT 2
3 4
+(4¢uuuz - 6£zzuu)ugg + (¢uuuu - 4§zuuu)ux + (12¢zuu - 18£zzu)uzuzz
2 2
5 3
+(4¢uu - 16£zu)uzuz:tz + (¢u - 461‘)”1111 - €uuuuuz - 10€uuuuzu:vz
2 2
_15§uuuacumz - 10€uuuzuac:c:c - loguuxmumwx - 5§uuxuxmx:c — NzzaxzUy
—TxxxaUt — 477xmxuuxuy - 477$xxuxy - (1277xmu + 1277xu)uxuacy
2 4 3 4 2 4 3

_anzuuuzuy — ANzuuuUzr Uy — NuuuuUzg Uy — 12nzuuuzuzy — ANuuuUg Uzy

6 12 6 b 3 :
- nzzuuzzuy - nzuuuzuyuzm - nuuuuxuyuzz - nuuuyux;c
712,’7uuuzuzyuzz - 477uzuz:vzuy - 477uuuzuyuzz - nuuzzzzuy

2

_477uuzzzuzy - 127]zuuzzuzy - 67]zzuzzy - Gnuuug;uzzy - 67]uu:czu:cmy
_4771:“9:3::01/ - 477uuxuacx9:y — AT pzuUats — ATogaUst — 12TpauUg Ugt

6 2 4 3 4 12 2 4 3
—OTzzuulUzy Ut — FTzuuuUzg Ut — TuuuuUzg Ut — TruuUg Uzt — FTyuuuUg Uzt

2 2
_GTzzuuzzut - 127—zuuuzuzzut - 6Tuuuuzuzzut - 3Tuuuzzut
74Tzuuzzzut - 47—uuuzuzzzut — TulUzzzzUt — 4Tuuzzzumt - IZTzuuzzuzt
2

712Tuuuzuzzuzt - 6Tzzuzzt - 12Tzuuzuzt - GTuuuxuzzt - GTuuzzuzzt

—ATpUzrat — ATuUzUzzat -

Substitute them in Equation (12) and then compare coefficients of various monomials in derivatives of ‘u’. This yields the

following equations:

§u =0,
Nu = 0,
Tw = 0,
uu = 0,
Ty =0,
Ne = 0,
T = 0,
¢zu = 0,
§ox = 0,

0 = ¢o+ Gut + U oo + Bdyy + Abaaca

0 = 7n+ 6u2¢x — &at — BEyy + dtu + 40Przau
0 = 3u’p — & — v’y + P + 6adru ,

0 = 2¢ —ués +ure + udy ,

0 = fz_Zny"‘Tt,

Tt = 361‘ )
Myy 2¢yu
nt —2B&y .
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After some simplifications, we get, the following PDEs,

Ne =

d)z'u, =

Tt =
Nyy =

e =

(),

u = nu = 0,

9(y, t)x + h(y, 1) ,

$Puu = 0,

bo + bot + U’ boz + Bdyy + APraea
T+ 6u’pr — &t — By + bru + 40Prazu |
3utp — & — u’Ee + U’ + 6a¢any
20 — uly + utt + UPy

o — 20y + 1,

3

2¢yu

—2B8y .

Using the above equations and some more manipulations, we get,

m
Il

ks + kay ,
n = k172k‘4tﬁ,

ko ,

\]
I

p = 0.

(29)
(30)
(31)

(32)

At this stage, we construct the symmetry generators corresponding to each of the constants involved. These are a total of

four generators given by

no= g
szzy%*%ﬂa%-

The one-parameter groups g;(¢) generalized by the V;, where i=1, 2, 3, 4, are

gi(e) :
ga(e) :
gs(e) :

ga(e) :

where exp(eV;) (z,y, t;u) = (T, 7, t;a) and

(i) g2 is time translation ,

(z,y,tu) — (z,y+e6t,u),
(z,y,u) —  (z,y,t+e6u),
(z,y,t;u) — (z+eytu),

(x7y7t;u) - (x—|—ye,y—2t,8€,t,u) 5

(33)

(ii) g1, g3 and g4 are the space-invariant of the equation. The symmetry generators found in Equation (33) form a closed

Lie Algebra whose commutation table is shown below.
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Vi,Vl| Vi | Vo |VB| Wa
1% 0 0 0 Vs
Va 0 0 0 |—28V1
V3 0 0 |0 0
Va |—V3(28V1| 0 0

Table 1. Commutation relations satisfied by above generators is

The commutation relations of the Lie algebra, determined by Vi, V2, V3 and Vi are shown in the above table. These vector

fields form a Lie algebra L by:

[‘/17‘/4] =Vs B [VQ,W} = 725‘/1 .

For this four-dimensional Lie algebra the commutator table for V; is a (4 ® 4) table whose (i, j)th entry expresses the Lie

Bracket [V;, V;] given by the above Lie algebra L. The table is skew-symmetric and the diagonal elements all vanish. The

coefficient C; ; 1. is the coefficient of V; of the (i, )" entry of the commutator table and the related structure constants can

be easily calculated from above table are as follows:
Ciaz=1, Coy1=-28.

The Lie algebra L is solvable. The radical of G is ,
R=<V3>® <V, Vo, Vs >.

In the next section, we derive the reduction of (6) to PDEs with two independent variables and ODEs. These are four

one-dimensional Lie subalgebras
Lia={Vi}, Lea={Va}, Ls3={Va}, Lea={Va}

and corresponding to each one-dimensional subalgebras we may reduce (6) to a PDE with two independent variables. Further
reductions to ODEs are associated with two-dimensional subalgebras. It is evident from the commutator table that there

are no two-dimensional solvable non-abelian subalgebras. And there are four two-dimensional Abelian subalgebras, namely,
Lax={Vi,Va}, Lao={V1,Vs}, Laz={Va,Va}, Las={V5,Va}.

3. Reductions of(u; + u + u3u, + Qtgey)r + Buyy = 0 by One-Dimensional
Subalgebras

Case 1: Vi =0, .

The characteristic equation associated with this generator is

We integrate the characteristic equation to get three similarity variables,

z=s, t=r and u=w(rs). (34)
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Using these similarity variables in Equation (6) can be recast in the form

2 2 3
ws+3w Wy + Wsr + W wss"'awssss:()-

Case 2: Vo =0, .

The characteristic equation associated with this generator is

Following standard procedure we integrate the characteristic equation to get three similarity variables,

x=s, y=r and u=w(rs).

Using these similarity variables in Equation (6) can be recast in the form

2 2 3
w5+3w wy +w wss"‘ﬂwrr"_awssss =0.

Case3: V3=0,.

The characteristic equation associated with this generator is

Following standard procedure we integrate the characteristic equation to get three similarity variables,

y=s, t=r and u=w(rs) .

Using these similarity variables in Equation (6) can be recast in the form

Bwss =0 .

Case 4 : Vy =y0, — 2tB0, .

The characteristic equation associated with this generator is

dx dy dt du

y =2t 0 0

Following standard procedure we integrate the characteristic equation to get three similarity variables,

s=—(y>+4rBz), t=r and u=w(rs).

Using these similarity variables in Equation (6) can be recast in the form

drBuws = 48w wssr’ B2 — dwerf — AsPwss + 16w w,sr2 8% — 68w,

+256’I"4ﬁ4awssss .

(36)

(37)

(39)

(41)
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4. Reductions of(u; 4+ u +u3uy, + atyry ), + Buyy = 0 by Two-Dimensional
Subalgebras

Case I : Reduction under V; and V5 .

From Table 1 we find that the given generators commute [V1,V2] = (0. Thus either of Vi or Vo can be used to
start the reduction with. For our purpose we begin reduction with Vi. Therefore we get Equation (34) and Equation (35).

At this stage, we express V2 in terms of the similarity variables defined in (34). The transformed V5 is

The characteristic equation for V3 is
ds _dr _ dw

Integrating this equation as before leads to new variables
s=+v and w = k(y),

which reduce Equation (35) to a fourth-order ODE
k/+3k2k/2+k3k“+o¢k“”:0 ) (42)

Case II : Reduction under V; and Vs .

From Table 1 we find that the given generators commute [Vi,V3] = 0. Thus either of Vi or V3 can be used to
start the reduction with. For our convenience we begin reduction with V3. Therefore we get Equation (38) and Equation

(39). At this stage, we express Vi in terms of the similarity variables defined in Equation (38). The transformed V; is

The characteristic equation for \71 is

Integrating this equation as before leads to new variables
r=+v and w=k(y) .

It follows that Equation (39) is satisfied. So, now reduction start with V3. Therefore we get Equation (34) and Equation

(35). At this stage, we express V2 in terms of the similarity variables defined in Equation (34). The transformed V3 is

Vi = 0s
Similarly of above procedure, Equation (35) is satisfied.
Case III : Reduction under V5 and V3 .
In this case the two symmetry generators Vo and V3 satisfy the commutation relation [Va,V3] = 0. This suggests

that reduction in this case should start with V3. The similarity variables are

8
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The corresponding reduced PDE is

The transformed V5 is

The invariants of V5 are

which reduce Equation (39) to the ODE

Case IV : Reduction under V3 and V; .

In this case the two symmetry generators Vi and V, satisfy the commutation relation [Vs,Vi] = 0.

y=s, t=r and u=w(rs).

ﬁwss =0.

s=~ and w=k(vy),

Bk =0.

(43)

This suggests

that reduction in this case should start with V3. Therefore we get Equation (38) and Equation (39). The transformed Vj is

The invariants of V are

Vi=—2rB0s .

r=+v and w=k(y) .

It follows that Equation (39) is satisfied. So, now reduction start with Vj. Therefore we get Equation (40) and Equation

(41). Now transforming V3 in these new variables is given by

The invariants of V3 are

In these variables Equation (41) is satisfied.

5. Conclusions

In this Paper,

Vs = —4rBo; .

r=+v and w=k(y) .

Algebra Reduction

K+ 3k%K2 + K3k + ok =0

Satisfy the Equation

Bk// —

Satisfy the Equation

(1). A (2+1)-dimensional KAV equation (u; +u +uuz + Qtizes ) + fuyy = 0 where a, B € R, is subjected to Lie’s classical

method.
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. Equation (6) admits a four-dimensional symmetry group.
. It is established that the symmetry generators form a closed Lie algebra.
. Classification of symmetry algebra of (6) into one- and two-dimensional subalgebras is carried out.

. Systematic reduction to (141)-dimensional PDE and then to first- or second order ODEs are performed using one-

dimensional and two-dimensional solvable Abelian subalgebras.
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