

International Journal of Current Research in Science and Technology

Weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuity in Generalized Topologies

Research Article

 $\mathbf{1}$

R.Mariappan¹[∗] and M.Murugalingam²

- 1 Department of Science and Humanities, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, India.
- 2 Department of Mathematics, Thiruvalluvar College, Papanasam, Tamil Nadu, India.
- **Abstract:** In this paper, we introduce and study the notions of weakly σ -H-open sets and weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuity in a hereditary generalized topological space. Also we prove that a function $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$ is (μ, λ) -continuous if and only if f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous and strong $(S_{\mathcal{H}}, \lambda)$ -continuous.

MSC: 54A05.

Keywords: Generalized topology, hereditary class, α -H-open, β -H-open, σ -H-open and (σ_H, λ)-continuity. c JS Publication.

1. Introduction and Preliminaries

A family μ of subset of X is called a generalized topology(GT)[\[1\]](#page-7-0) if $\emptyset \in \mu$ and closed under arbitrary union. The generalized topology μ is said to be strong [\[10\]](#page-7-1), if $X \in \mu$. (X, μ) is called a quasi topology [\[6\]](#page-7-2), if μ is closed under finite intersection. A subset A of a generalized topological space (X, μ) is called μ - σ -open [\[3\]](#page-7-3) (resp. μ - π -open [3], μ - α -open [3], μ - β -open [3]) if $A \subset c_{\mu}(\iota_{\mu}(A))$ (resp. $A \subset i_{\mu}(c_{\mu}(A))$) $A \subset i_{\mu}(c_{\mu}(\iota_{\mu}(A))),$ $A \subset c_{\mu}(\iota_{\mu}(c_{\mu}(A))).$ c_{σ} is the intersection of all μ - σ -closed set containing A. A function $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$ is said to be (μ, λ) -continuous if for every λ -open set U in Y implies that $f^{-1}(U)$ is μ -open set in X. A hereditary class H of X is non-empty collection of subset of X such that $A \subset B$, $B \in H$ implies $A \in \mathcal{H}$ [\[2\]](#page-7-4). In the paper [\[2\]](#page-7-4), for a hereditary class \mathcal{H} , the operator ()*:exp X \rightarrow exp X was introduced. An operator c^*_{μ} : exp X → exp X was defined by using the operator ()^{*} (i.e., for $A \subset X$) $c^*_{\mu}(A) = A \cup A^*$, which is monotonic, enlarging and idempotent. Some properties of operators ()^{*} and c^*_{μ} were investigated in [\[2\]](#page-7-4). For every subset A of X, with respect to μ and a hereditary class $\mathcal H$ of subset of X, then $\mu^* = \{A \subset X/c^*_{\mu}(X - A) = X - A\}$ is generalized topology[\[2\]](#page-7-4), and $i^*_{\mu}(A)$ will denote the interior of A in (X, μ^*) . A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be α-H-open [\[2\]](#page-7-4)(resp. β-H-open [2], σ-H-open, π-H-open [2], δ-H-open [2], t-H-set [\[7\]](#page-7-5), t*-H-set [7]) if $A \subseteq i_{\mu}(c_{\mu}^{*}(i_{\mu}(A)))$ (resp. $A \subseteq c_{\mu}(i_{\mu}(c_{\mu}^{*}(A))), A \subseteq c_{\mu}^{*}(i_{\mu}(A)), A \subseteq i_{\mu}(c_{\mu}^{*}(A)), i_{\mu}(c_{\mu}^{*}(A)), i_{\mu}(c_{\mu}^{*}) = i_{\mu}(A), i_{\mu}(c_{\mu}^{*}(i_{\mu}(A))) = i_{\mu}(A)$. If A is μ^* -closed [\[2\]](#page-7-4) if $A^* \subset A$.

Lemma 1.1 ([\[2\]](#page-7-4)). *If* (X, μ) *is GTS with a hereditary class* H. *If* A *and* B *are any two subets of* X, *then the following hold.* (a) If $A \subset B$, then $A^* \subset B^*$.

- (b) $A^* = c^*_{\mu}(A) \subset c^*_{\mu}(A^*).$
- (c) If $A \subset A^*$, then $c_\mu(A) = A^* = c^*_{\mu}(A) = c^*_{\mu}(A^*)$.
- (d) If $U \in \mu$, then $U \cap A^* \subset (U \cap A)^*$.

[∗] *E-mail: mariappanbagavathi@gmail.com*

Lemma 1.2 ([\[7\]](#page-7-5)). *If* (X, μ) *is quasi topology with a hereditary class* H. *Then the following hold.*

- (a) H is μ -codense if and only if $A \subset A^*$ for every $A \in \mu$.
- (b) If $A \subset A^*$, then $A^* = c_\mu(A^*) = c_\mu(A) = c^*_\mu(A)$.

Lemma 1.3 ([\[9\]](#page-7-6)). *If* (X, μ) *is GTS with a hereditary class* \mathcal{H} *. For* $A \subset X$ *,* (a) $c^*_{\mu}(A) = X - i^*_{\mu}(X - A)$. (*b*) $i_{\mu}(A)$ ⊂ $i_{\mu}^{*}(A)$ ⊂ *A*.

2. Weakly σ - \mathcal{H} -open Set

Definition 2.1. *A subset* A *of a hereditary generalized topological space* (X, μ, \mathcal{H}) *is said to be weakly* $\sigma \text{-} \mathcal{H}$ -*open, if* $A \subset$ $c^*_{\mu}(i_{\mu}(c_{\mu}(A)))$ *.* A subset A of X is said to be weakly σ -H-closed if its complement is weakly σ -H-open.

Proposition 2.2. In a hereditary generalized topological space (X, μ, \mathcal{H}) , the following hold.

- (a) *Every* α*-*H*-open is weakly* σ*-*H*-open.*
- (b) *Every strong* β*-*H*-open is weakly* σ*-*H*-open.*
- (c) *Every* σ*-*H*-open is weakly* σ*-*H*-open.*
- (d) *Every* π*-*H*-open is weakly* σ*-*H*-open.*

Theorem 2.3. Let (X, μ) be a quasi topology with a hereditary class H and H be a μ -codense and $A \subset X$. If A is σ -H-open *if and only if it is both weakly* σ*-*H*-open and* δ*-*H*-open.*

Proof. Necessity: By Proposition 2.2, A is weakly σ -H open. Now we prove that $i_{\mu}(c_{\mu}^{*}(A)) \subset c_{\mu}^{*}(i_{\mu}(A))$. Since A is σ -Hopen, implies that $A \subset c^*_{\mu}(i_{\mu}(A)),$ so, $i_{\mu}(c^*_{\mu}(a^*_{\mu}(c^*_{\mu}(i_{\mu}(A)))) \subset i_{\mu}(c^*_{\mu}(i_{\mu}(A))) \subset c^*_{\mu}(i_{\mu}(A)).$ Hence A is δ -*H*-open. Sufficiency: Let A be both δ -H-open and weakly σ -H-open. Then we have $A \subset c^*_{\mu}(i_{\mu}(c_{\mu}(A))) = c^*_{\mu}(i_{\mu}(c^*_{\mu}(A))) \subset$ $c^*_{\mu}(c^*_{\mu}(i_{\mu}(A))) \subset c^*_{\mu}(i_{\mu}(A))$. Hence A is δ - \mathcal{H} -open. \Box

Theorem 2.4. *Let* (X, μ, \mathcal{H}) *be a hereditary generalized topological space. Then any arbitrary union of weakly* σ - \mathcal{H} -open *sets is weakly* σ*-*H*-open.*

Proof. Let U_{α} be weakly σ -H-open for every $\alpha \in \Delta$, we have $U_{\alpha} \subset c_{\mu}^*(i_{\mu}(c_{\mu}(U_{\alpha})))$ for every $\alpha \in \Delta$. Then $\cup_{\alpha \in \Delta} U_{\alpha} \subset$ $\cup_{\alpha\in\Delta}c_{\mu}^{\ast}(i_{\mu}(c_{\mu}(U_{\alpha})))=\cup_{\alpha\in\Delta}((i_{\mu}(c_{\mu}(U_{\alpha})))^{\ast}\cup i_{\mu}(c_{\mu}(U_{\alpha})))\subset(\cup_{\alpha\in\Delta}i_{\mu}(c_{\mu}(U_{\alpha})))^{\ast}\cup(i_{\mu}(c_{\mu}(U_{\alpha\in\Delta}U_{\alpha})))\subset(i_{\mu}(c_{\mu}(U_{\alpha\in\Delta})))^{\ast}\cup$ $(i_{\mu}(c_{\mu}(\cup_{\alpha\in\Delta}U_{\alpha})))=c_{\mu}^{*}(i_{\mu}(c_{\mu}(\cup_{\alpha\in\Delta}U_{\alpha})))$. Hence $\cup_{\alpha\in\Delta}U_{\alpha}$ is weakly σ -*H*-open. \Box

Remark 2.5. *The following example shows that the intersection of weakly* σ*-*H*-open sets need not be a weakly* σ*-*H*-open set.*

Example 2.6. *Consider a hereditary generalized topological space* (X, μ, \mathcal{H}) *where* $X = \{a, b, c, d\}, \mu =$ $\{\emptyset, \{b\}, \{b, c\}, \{c, d\}, \{b, c, d\}\}\$ and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}\}\$. If $A = \{b, d\}$ and $B = \{c, d\}$, then $c^*_{\mu}(\iota_{\mu}(c_{\mu}(A))) = c^*_{\mu}(\iota_{\mu}(X))$ $c^*_{\mu}(\{b, c, d\}) = X \supset A$ and $c^*_{\mu}(i_{\mu}(c_{\mu}(B))) = c^*_{\mu}(i_{\mu}(\{a, c, d\})) = c^*_{\mu}(\{c, d\}) = \{a, c, d\} \supset B$. Hence A and B are weakly σ -H-open sets. But $c^*_{\mu}(i_{\mu}(c_{\mu}(A \cap B))) = c^*_{\mu}(i_{\mu}(c_{\mu}(\{d\}))) = c^*_{\mu}(i_{\mu}(\{a,d\})) = c^*_{\mu}(\emptyset) = \emptyset \not\supseteq A \cap B$, so, $A \cap B$ is not weakly σ*-*H*-open.*

Theorem 2.7. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A, $B \subset X$. If A is weakly σ - \mathcal{H} -open and $B \in \mu$, then $A \cap B$ *is weakly* σ - \mathcal{H} -open.

Proof. If A is weakly σ -H-open implies that $A \subset c^*_{\mu}(i_{\mu}(c_{\mu}(A)))$ and $i_{\mu}(B) = B$. Then $A \cap B \subset c^*_{\mu}(i_{\mu}(c_{\mu}(A))) \cap B =$ $((i_{\mu}(c_{\mu}(A)))^* \cup i_{\mu}(c_{\mu}(A))) \cap B = ((i_{\mu}(c_{\mu}(A)))^* \cap B) \cup (i_{\mu}(c_{\mu}(A)) \cap B) \subset (i_{\mu}(c_{\mu}(A)) \cap B)^* \cup (i_{\mu}(c_{\mu}(A)) \cap B) = (i_{\mu}(c_{\mu}(A))) \cap B$ $(i_{\mu}(B))^* \cup (i_{\mu}(c_{\mu}(A)) \cap i_{\mu}(B)) = (i_{\mu}(c_{\mu}(A) \cap B))^* \cup (i_{\mu}(c_{\mu}(A) \cap B)) \subset (i_{\mu}(c_{\mu}(A \cap B))^* \cup (i_{\mu}(c_{\mu}(A \cap B)) = c_{\mu}^*(i_{\mu}(c_{\mu}(A \cap B))).$ Hence $A \cap B$ is weakly σ - \mathcal{H} -open. \Box

Remark 2.8. *The following theorem establish that, in the above result,* μ -openness can be replaced by α -H-openness.

Theorem 2.9. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A, $B \subset X$. If A is weakly σ -H-open and B is α ^{-H}-open, then $A \cap B$ *is weakly* σ -H-open.

Proof. Since A is α -H-open implies $A \subset i_{\mu}(c_{\mu}^*(i_{\mu}(A)))$ and B is weakly σ -H-open implies $B \subset c_{\mu}^*(i_{\mu}(c_{\mu}(B)))$. Then $A \cap B \subset$ $c^*_{\mu}(i_{\mu}(c_{\mu}(A))) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B))) = ((i_{\mu}(c_{\mu}(A)))^* \cup (i_{\mu}(c_{\mu}(A)))) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B))) = ((i_{\mu}(c_{\mu}(A)))^* \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B))) \cup (i_{\mu}(c_{\mu}(A))) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B)))$ $i_{\mu}(c_{\mu}^*(i_{\mu}(B)))) \subset (i_{\mu}(c_{\mu}(A)) \cap i_{\mu}(c_{\mu}^*(i_{\mu}(B))))^* \cup i_{\mu}(i_{\mu}(c_{\mu}(A)) \cap c_{\mu}^*(i_{\mu}(B))) = (i_{\mu}(i_{\mu}(c_{\mu}(A))) \cap c_{\mu}^*(i_{\mu}(B)))^* \cup i_{\mu}(i_{\mu}(c_{\mu}(A))) \cap c_{\mu}(c_{\mu}(A))$ $c^*_{\mu}(i_{\mu}(B))) \subset (i_{\mu}(c^*_{\mu}(i_{\mu}(c_{\mu}(A)) \cap i_{\mu}(B))))^* \cup i_{\mu}(c^*_{\mu}(i_{\mu}(c_{\mu}(A)) \cap i_{\mu}(B))) = (i_{\mu}(c^*_{\mu}(i_{\mu}(c_{\mu}(A) \cap i_{\mu}(B))))^* \cup i_{\mu}(c^*_{\mu}(i_{\mu}(c_{\mu}(A) \cap i_{\mu}(B))))$ $(i_{\mu}(B)))) \subset (i_{\mu}(c_{\mu}^*(i_{\mu}(c_{\mu}(A \cap i_{\mu}(B)))))^* \cup i_{\mu}(c_{\mu}^*(i_{\mu}(c_{\mu}(A \cap i_{\mu}(B)))) \subset (i_{\mu}(c_{\mu}^*(i_{\mu}(c_{\mu}(A \cap B)))))^* \cup i_{\mu}(c_{\mu}^*(i_{\mu}(c_{\mu}(A \cap B)))) \subset$ $(i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}(A \cap B))))^* \cup i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}(A \cap B))) = (i_{\mu}(c_{\mu}(A \cap B)))^* \cup i_{\mu}(c_{\mu}(A \cap B)) = c_{\mu}^*(i_{\mu}(c_{\mu}(A \cap B)))$. Hence $A \cap B$ is weakly σ - \mathcal{H} -open. \Box

Proposition 2.10. *Let* (X, μ, \mathcal{H}) *be a hereditary generalized topological space and* A, $B \subset X$. *Then* (a) If $A \subset B \subset c^*_{\mu}(A)$ and A is weakly σ -H-open, then B, A^* and B^* are weakly σ -H-open sets. (b) *If* $A \subset B \subset c^*_{\mu}(A)$ *and* A *is* π - \mathcal{H} -open, then B *is strong* β - \mathcal{H} -open.

(c) *If* $A \subset B \subset c_{\mu}(A)$ *and* A *is* π - \mathcal{H} -open, then B *is* β - \mathcal{H} -open.

Proof. (a) Suppose that $A \subset B \subset c^*_{\mu}(A)$ and A is weakly σ -H-open implies that $A \subset c^*_{\mu}(i_{\mu}(c_{\mu}(A)))$. Since $B \subset c^*_{\mu}(A) \subset c^*_{\mu}(\iota_{\mu}(c_{\mu}(A))) \subset c^*_{\mu}(\iota_{\mu}(c_{\mu}(B)))$. Hence B is weakly σ -H-open. Since $A \subset B \subset A^*$, we have B,A^* and B^* are weakly σ - \mathcal{H} -open sets.

(b) Suppose $A \subset B \subset c^*_{\mu}(A)$ and A is π -H-open implies that $A \subset i_{\mu}(c^*_{\mu}(A))$. Now $B \subset c^*_{\mu}(A) \subset c^*_{\mu}(i_{\mu}(c^*_{\mu}(A))) \subset$ $c^*_{\mu}(i_{\mu}(c^*_{\mu}(B)))$. Hence B is strong β - \mathcal{H} -open.

(c) Suppose $A \subseteq B \subseteq c_{\mu}(A)$ and A is π -H-open implies that $A \subseteq i_{\mu}(c_{\mu}^{*}(A))$. Now $B \subseteq c_{\mu}(A) \subseteq c_{\mu}(i_{\mu}(c_{\mu}^{*}(A))) \subseteq$ $c_{\mu}(i_{\mu}(c_{\mu}^{*}(B)))$. Hence B is β - \mathcal{H} -open. \Box

Corollary 2.11. *Let* (X, μ, \mathcal{H}) *be a hereditary generalized topological space and* $A \subset X$ *. Then the following hold.*

(a) If A is weakly σ -H-open, then $c^*_{\mu}(A)$ and $c^*_{\mu}(i_{\mu}(c^*_{\mu}(A)))$ are weakly σ -H-open sets.

(b) If A is π -H-open, then $c^*_{\mu}(A)$ and $c^*_{\mu}(i_{\mu}(c^*_{\mu}(A)))$ are strong β -H-open sets.

Corollary 2.12. *Let* (X, μ, \mathcal{H}) *be a hereditary generalized topological space and* $A \subset X$ *be a weakly* $\sigma \cdot \mathcal{H}$ -open. Then the *following hold.*

(a) If A is $A \subset A^*$, then A^* is weakly σ - \mathcal{H} -open.

(b) If A is $A = A^*$, then every subset containing A is strong β - H -open.

Theorem 2.13. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. If $\mu = \{\emptyset\}$ (resp. $P(X)$, N), then the set of all *weakly* σ*-*H*-open sets is same as the set of all* µ*-*β*-open sets* (*resp. the set of all weakly* σ*-*H*-open sets is same as the set of all* µ*-*π*-open sets, the set of all weakly* σ*-*H*-open sets is same as the set of all* µ*-*β*-open sets*).

Proof. (i) If $\mathcal{H} = {\emptyset}$ then $A^* = c_\mu(A)$ and hence $c^*_\mu(A) = A \cup A^* = c_\mu(A)$ for every subset A of (X, μ, \mathcal{H}) . Therefore, $c_{\mu}^*(i_{\mu}(c_{\mu}(A))) = c_{\mu}(i_{\mu}(c_{\mu}(A))).$

(*ii*) Let $\mathcal{H} = P(X)$, then $A^* = \emptyset$ and $c^*_{\mu}(A) = A$ for every subset A of X. Therefore, $c^*_{\mu}(i_{\mu}(c_{\mu}(A))) = i_{\mu}(c_{\mu}(A))$. (*iii*) Let $\mathcal{H} = \mathcal{N}$, then $A^* = c_\mu(i_\mu(c_\mu(A)))$ for every subset A of X. Therefore, we have $c^*_\mu(i_\mu(c_\mu(A))) = (i_\mu(c_\mu(A)))^* \cup$ $i_{\mu}(c_{\mu}(A)) = c_{\mu}(i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}(A)))) \cup i_{\mu}(c_{\mu}(A)) = c_{\mu}(i_{\mu}(c_{\mu}(A))) = i_{\mu}(c_{\mu}(A)) = c_{\mu}(i_{\mu}(c_{\mu}(A))).$ Hence $c_{\mu}^{*}(i_{\mu}(c_{\mu}(A)))) = c_{\mu}(i_{\mu}(c_{\mu}(A)))$ $c_{\mu}(i_{\mu}(c_{\mu}(A))).$ \Box

Definition 2.14. A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a strong $\sigma \text{-} \mathcal{H}$ -open if $A \subset c^*_{\mu}(i_{\mu}(A^*)).$

Proposition 2.15. *Let* (X, μ, \mathcal{H}) *be a hereditary generalized topological space and* $A \subset X$. *Then the following are equivalent.*

- (a) A *is strong* σ*-*H*-open.*
- (b) A *is both strong* β*-*H*-open and strong* σ*-*H*-open.*
- (c) A *is both weakly* σ*-*H*-open and strong* σ*-*H*-open.*
- (d) A *is both weakly* σ - \mathcal{H} -open and $A \subset A^*$.

Corollary 2.16. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space where \mathcal{H} is μ -codense and $A \subset X$. If $A \subset A^*$, *then the following are equivalent.*

- (a) A *is strong* σ*-*H*-open.*
- (b) A *is strong* β*-*H*-open.*
- (c) A *is* β*-*H*-open.*
- (d) A *is* µ*-*β*-open.*
- (e) A *is weakly* σ*-*H*-open.*

Theorem 2.17. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A, $B \subset X$. If A is strong σ -H-open and B *is* α -H-open, then $A \cap B$ *is* σ -H-open.

Proof. A is strong σ -H-open implies that $A \subset c^*_{\mu}(i_{\mu}(A^*))$ and B is α -H-open implies that $B \subset i_{\mu}(c^*_{\mu}(i_{\mu}(B)))$. Now, $A \cap B \subset c^*_{\mu}(i_{\mu}(A^*)) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B))) = ((i_{\mu}(A^*))^* \cup i_{\mu}(A^*)) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B))) = ((i_{\mu}(A^*))^* \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B)))) \cup (i_{\mu}(A^*) \cap i_{\mu}(A^*))$ $i_{\mu}(c_{\mu}^{*}(i_{\mu}(B)))) \subset (i_{\mu}(A^{*}) \cap i_{\mu}(c_{\mu}^{*}(i_{\mu}(B))))^{*} \cup i_{\mu}(i_{\mu}(A^{*}) \cap c_{\mu}^{*}(i_{\mu}(B))) \subset (i_{\mu}(i_{\mu}(A^{*}) \cap c_{\mu}^{*}(i_{\mu}(B))))^{*} \cup i_{\mu}(c_{\mu}^{*}(i_{\mu}(A^{*}) \cap i_{\mu}(B))) \subset$ $(i_{\mu}(c_{\mu}^*(i_{\mu}(A^*) \cap i_{\mu}(B))))^* \cup i_{\mu}(c_{\mu}^*(i_{\mu}(A^* \cap i_{\mu}(B)))) \subset (i_{\mu}(c_{\mu}^*(i_{\mu}(A^* \cap i_{\mu}(B))))^* \cup i_{\mu}(c_{\mu}^*(i_{\mu}(A \cap i_{\mu}(B))^*)) \subset (i_{\mu}(c_{\mu}^*(i_{\mu}(A \cap i_{\mu}(B))))^*)$ $(i_{\mu}(B))^*)$))^{*} ∪ $i_{\mu}(c_{\mu}^*(i_{\mu}(A \cap i_{\mu}(B))^*)) = c_{\mu}^*(i_{\mu}(c_{\mu}^*(i_{\mu}((A \cap i_{\mu}(B))^*))) \subset c_{\mu}^*(i_{\mu}(c_{\mu}^*((A \cap i_{\mu}(B))^*))) = c_{\mu}^*(i_{\mu}((A \cap i_{\mu}(B))^*))$ $c^*_{\mu} (i_{\mu} ((A \cap B)^*)$. Hence $A \cap B$ is strong σ - \mathcal{H} -open. \Box

Proposition 2.18. *Let* (X, μ, \mathcal{H}) *be a hereditary generalized topological space and* $A \subset X$. If A *is weakly* $\sigma \text{-} \mathcal{H}$ -open, then A *is* µ*-*β*-open.*

Example 2.19. *Consider a hereditary generalized topological space* (X, μ, \mathcal{H}) *where* $X = \{a, b, c, d\}, \mu =$ $\{\emptyset, \{c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, X\}$ and $\mathcal{H} = \{\emptyset, \{d\}\}\$. If $A = \{a, b\}$, then $c_{\mu}(\mu(c_{\mu}(A))) = c_{\mu}(\mu(\{a, b, d\})) = c_{\mu}(\{b, d\}) = c_{\mu}(\{a, b, d\})$ ${a, b, d} \supset A$. Hence A is weakly μ - β -open. But $c^*_{\mu}(i_{\mu}(c_{\mu}(A))) = c^*_{\mu}(i_{\mu}(\{a, b, d\})) = c^*_{\mu}(\{b, d\}) = \{b, d\} \not\supseteq A$, so, A is not *weakly* σ*-*H*-open.*

Theorem 2.20. Let (X, μ, \mathcal{H}) be a quasi topology with hereditary class \mathcal{H} and \mathcal{H} is μ -codense and $A \subset X$. Then A is µ*-*β*-open if and only if* A *is weakly* σ*-*H*-open.*

Proof. By Proposition 2.18, every weakly σ -H-open is μ -β-open. Conversely, if A is μ -β-open implies that A ⊂ $c_{\mu}(i_{\mu}(c_{\mu}(A)))$. By Lemmas 1.2, $c_{\mu}(i_{\mu}(c_{\mu}(A))) = c_{\mu}^{*}(i_{\mu}(c_{\mu}(A)))$ and so $A \subset c_{\mu}^{*}(i_{\mu}(c_{\mu}(A)))$. Hence A is weakly σ -H-open.

Theorem 2.21. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. Then A is weakly σ -H-closed set if *and only if* $i^*_{\mu}(c_{\mu}(i_{\mu}(A))) \subset A$.

Proof. If A is weakly σ -H-closed set, then X-A is weakly σ -H-open and hence X - $A \subset c^*_{\mu}(i_{\mu}(c_{\mu}(X-A))) = X - i^*_{\mu}(c_{\mu}(i_{\mu}(A)))$. Therefore $i^*_{\mu}(c_{\mu}(i_{\mu}(A))) \subset A$. Coversely, let $i^*_{\mu}(c_{\mu}(i_{\mu}(A))) \subset A$. Then $X \to A \subset c^*_{\mu}(i_{\mu}(c_{\mu}(X-A)))$. Hence $X \to A$ is weakly $\sigma \to A$. open. Thus A is weakly σ - \mathcal{H} -closed set. \Box

Definition 2.22. A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a strong S-H-set if $c^*_{\mu}(i_{\mu}(c_{\mu}(A))) = i_{\mu}(A)$. A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a strong $S_{\mathcal{H}}$ -set if $A = U \cap V$ *, where* $U \in \mu$ *and* V *is strong* S-H-set.

Proposition 2.23. In a hereditary generalized topological space (X, μ, \mathcal{H}) , the following hold.

- (a) *Every strong* S*-*H*-set is* S*-*H*-set,*
- (b) *Every strong* $S_{\mathcal{H}}$ -set is $S_{\mathcal{H}}$ -set.

Proof. (a) If A is strong S-H-set, then $c^*_{\mu}(i_{\mu}(c_{\mu}(A))) = i_{\mu}(A)$. Now $i_{\mu}(A) \subset ((i_{\mu}(A))^* \cup i_{\mu}(A) = c^*_{\mu}(i_{\mu}(A))$ and $c^*_{\mu}(i_{\mu}(A)) = c^*_{\mu}(i_{\mu}(A))$ $c^*_{\mu}(c^*_{\mu}(i_{\mu}(c_{\mu}(A)))) \subset c^*_{\mu}(i_{\mu}(c_{\mu}(A))) = i_{\mu}(A)$. Hence A is S-H-set. (b) Obvious. \Box

Proposition 2.24. *Let* (X, μ, \mathcal{H}) *be a hereditary generalized topological space and* $A \subset X$ *. Then* A *is* S-H-set *if and only if* $(i_{\mu}(A))$ ^{*} ⊂ $i_{\mu}(A)$.

Proof. If A is S-H-set, then $c^*_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$, so $(i_{\mu}(A))^* \cup i_{\mu}(A) = i_{\mu}(A)$. Hence $(i_{\mu}(A))^* \subset i_{\mu}(A)$. Converse is \Box obvious.

Proposition 2.25. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space where \mathcal{H} is μ -codense and $A \subset X$. If A is S-H-set, then $(i_{\mu}(A))$ ^{*} = $i_{\mu}(A)$.

Proof. Since A is S-H-set, $c^*_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$. Now $c^*_{\mu}(i_{\mu}(A)) = c_{\mu}(i_{\mu}(A)) = (i_{\mu}(A))^*$. Therefore $i_{\mu}(A) = (i_{\mu}(A))^*$. \Box

Remark 2.26. *The following example shows that the converse of above theorem need not be true.*

Example 2.27. Let $X = \{a, b, c, d, e\}$, $\mu = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}, \{c, d, e\}$, ${a, c, d, e}$, X and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}, \{c\}\}\$. The hereditary class \mathcal{H} is not codense. If $A = \{a\}$, then A is S-H-set and $(i_{\mu}(A))^* = (\{a\}^*) = \emptyset \neq i_{\mu}(A).$

Proposition 2.28. *Let* (X, μ, \mathcal{H}) *be a hereditary generalized topological space and* $A \subset X$. A μ -closed set A *is strong* S-H-set *if and only if* A *is* S*-*H*-set.*

Proof. By propostion 2.23, every strong S-H-set is S-H-set. Conversely, if A is S-H-set, then $i_{\mu}(A) = c_{\mu}^{*}(i_{\mu}(A))$ $c^*_{\mu}(i_{\mu}(c_{\mu}(A)))$. Hence A is strong S-H-set. \Box

Remark 2.29. The following example shows that the notions weakly σ -H-open and strong $S_{\mathcal{H}}$ - set are independent.

Example 2.30. *Consider a hereditary generalized topological space* (X, μ, \mathcal{H}) *where* $X = \{a, b, c, d\}, \mu =$ $\{\emptyset, \{b\}, \{b, c\}, \{c, d\}, \{a, d\}, \{b, c, d\}\}\$ and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}\}\$. *Then*

(i) If $A = \{a, c\}$, then $c^*_{\mu}(i_{\mu}(c_{\mu}(A))) = c^*_{\mu}(i_{\mu}(\{a, c, d\})) = c^*_{\mu}(\{c, d\}) = \{a, c, d\} \supset A$. Hence A is weakly σ -H-open. But A is *not strong* $S_{\mathcal{H}}$ -set.

(ii) If $A = \{d\}$, then $A = U \cap V$ where $U = \{c, d\}$ is μ -open and $V = \{a, d\}$ is strong $S_{\mathcal{H}}$ -set. But $c^*_{\mu}(\iota_{\mu}(c_{\mu}(A)))$ $c^*_{\mu}(i_{\mu}(\{a,d\})) = c_{\mu}(\emptyset) = \emptyset \not\supseteq A$, so, A is not a weakly σ -H-open.

Theorem 2.31. In a strong hereditary generalized topological space (X, μ, \mathcal{H}) , the following are equivalent:

- (a) A *is* μ -open.
- (b) A *is weakly* σ -H-open and strong S_H -set.
- (c) A *is* σ -H-open and S_H -set.

Proof. (a) \Rightarrow (b) Obvious.

 $(b) \Rightarrow (a)$ If A is weakly σ -H-open and also a strong $S_{\mathcal{H}}$ -set. Then $A \subset c^*_{\mu}(i_{\mu}(c_{\mu}(A))) = c^*_{\mu}(i_{\mu}(c_{\mu}(U \cap V)))$, where $U \in \mu$ and V is strong S-H-set. Hence $A \subset U \cap A \subset U \cap (c^*_{\mu}(i_{\mu}(c_{\mu}(U))) \cap c^*_{\mu}(i_{\mu}(c_{\mu}(V)))) = U \cap i_{\mu}(V) = i_{\mu}(U \cap V) = i_{\mu}(A)$. This shows that A is μ -open.

 $(b) \Rightarrow (c)$ Obvious.

3. Generalized Weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous Functions

Definition 3.1. A function $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$ is said to be weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous (resp. strong $(S_{\mathcal{H}}, \lambda)$ -continuous) $if f^{-1}(V)$ *is weakly* σ -H-open (*resp. strong* S_H -set) *in* (X, μ, \mathcal{H}) *for every* μ -open V of (Y, λ) .

Proposition 3.2. *For a function* $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$ *, the following hold.*

- (a) *Every* (μ, λ) -continuous is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (b) *Every* (α_H, λ) -continuous is weakly (σ_H, λ) -continuous.
- (c) *Every strong* $(\beta_{\mathcal{H}}, \lambda)$ -continuous is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (d) *Every* $(\sigma_{\mathcal{H}}, \lambda)$ -continuous is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (e) *Every* $(\pi_{\mathcal{H}}, \lambda)$ *-continuous is weakly* $(\sigma_{\mathcal{H}}, \lambda)$ *-continuous.*

Proof. It follows from Proposition 2.2.

Theorem 3.3. For a function $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$, the following equivalent.

(a) f *is weakly* $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.

(b) For each $x \in X$ and each λ -open V containing $f(x)$, there exists weakly σ -H-open U such that $f(U) \subset V$.

Proof. Let $x \in X$ and V be λ -open set of Y containing $f(x)$. Take $W = f^{-1}(V)$, then by Definition W is weakly σ -H-open containing x and $f(W) \subset V$.

Conversely, let F be a λ -closed set of Y. Take $V = Y - F$, then V is μ -open in Y. Let $x \in f^{-1}(V)$, by hypothesis, there exists a weakly σ -*H*-open W of X containing x such that $f(W) \subset V$. Thus, we obtain $x \in W \subset c^*_{\mu}(i_{\mu}(c_{\mu}(W))) \subset c^*_{\mu}(i_{\mu}(c_{\mu}(f^{-1}(V))))$ and hence $f^{-1}(V) \subset c^*_{\mu}(\iota_{\mu}(c_{\mu}(V)))$. This shows that $f^{-1}(V)$ is weakly σ -H-open in X. Hence $f^{-1}(F) = X - f^{-1}(Y - F) =$ $X - f^{-1}(V)$ is weakly σ -*H*-closed set in X. \Box

Theorem 3.4. Let $f : (X, \mu, \mathcal{H}_1) \to (Y, \lambda, \mathcal{H}_2)$ and $g : (Y, \lambda, \mathcal{H}_2) \to (Z, \eta)$ be two functions, where \mathcal{H}_1 and \mathcal{H}_2 are hereditary *classes on* X, Y and Z respectively. Then $g \circ f$ is weakly (σ_H, λ) -continuous if f is weakly (σ_H, λ) -continuous and g is (λ, η) *-continuous.*

Proof. Let U be any η -open in Z. Since g is (λ, η) -continuous, $g^{-1}(U)$ is λ -closed in Y. Since f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is weakly σ -H-open in X. Hence $g \circ f$ is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous. \Box

Proposition 3.5. Let (X, μ, \mathcal{H}) and (Y, λ) be hereditary generalized topological space and generalized topology respectively. *Then a function* $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$, the following are equivalent.

(a) f *is* (μ, λ) -continuous.

 \Box

 \Box

- (b) f *is* (σ_H , λ)-continuous and (S_H , λ)-continuous.
- (c) f *is weakly* $(\sigma_{\mathcal{H}}, \lambda)$ -continuous and strong $(S_{\mathcal{H}}, \lambda)$ -continuous.

Proof. It is obvious from Theorem 2.31.

Theorem 3.6. A function $f: (X, \mu, \mathcal{H}) \to (Y, \lambda)$ is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous if and only if $f^{-1}(U)$ is weakly σ - \mathcal{H} -closed *in* (X, μ, \mathcal{H}) *, for every* λ *-closed* U *in* (Y, λ) *.*

Proof. Let f be weakly (σ_H, λ) -continuous and F be a λ -closed set in (Y, λ) . Then $Y - F$ is λ -open in (Y, λ) . Since f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous, $f^{-1}(Y - F)$ is weakly σ -H-open in (X, μ, \mathcal{H}) . But $f^{-1}(Y - F) = X - f^{-1}(F)$ and so $f^{-1}(F)$ is weakly σ -H-closed in (X, μ, \mathcal{H}) . Coversely, assume that $f^{-1}(F)$ is weakly σ -H-closed in (X, μ, \mathcal{H}) for every λ -closed set in F in (Y, λ) . Let V be a λ -open in (Y, λ) . Then $Y - V$ is λ -closed in (Y, λ) and by hypothesis $f^{-1}(Y - F)$ is weakly σ -H-closed in (X, μ, \mathcal{H}) . Since $f^{-1}(Y - V) = X - f^{-1}(V)$, we have $f^{-1}(V)$ is weakly σ -H-open in (X, μ, \mathcal{H}) , and so f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous. \Box

Definition 3.7. Let x be any element of a hereditary generalized topological space (X, μ, \mathcal{H}) and $V \subset X$. Then V is said to *be weakly* σ_H -neighbourhood of x in X if there exists weakly σ -H-open U of X such that $x \in U \subset V$.

Theorem 3.8. For a function $f : (X, \mu, \mathcal{H}) \to (Y, \lambda)$, the following are equivalent.

- (a) f *is weakly* $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (b) *the inverse image of each* λ*-closed set is weakly* σ*-*H*-closed.*
- (c) for each x in X, the inverse of every λ -neighbourhood of $f(x)$ is weakly σ_H -neighbourhood of x in X.
- (d) For each x in X and every λ -open U containing $f(x)$, there exists weakly σ -H-open V containing x such that $f(V) \subset U$.
- (e) $f(c_{\mu}(A)) \subset c_{\lambda}(f(A))$ *for every subset* A *of* X.
- (f) $c_{\mu}(f^{-1}(B)) \subset f^{-1}(c_{\lambda}(B))$ for every subset B of Y.

Proof. (a) \Leftrightarrow (b) This follows from Theorem 3.6.

 $(b) \Rightarrow (c)$. Let $x \in X$. Assume that V be a neighbourhood of $f(x)$. Then there exists a λ -open U in Y such that $f(x) \in U \subset V$. Consequently $f^{-1}(U)$ is weakly σ -H-open in X and $x \in f^{-1}(U) \subset f^{-1}(V)$ is weakly $\sigma_{\mathcal{H}}$ -neighbourhood of x.

 $(c) \Rightarrow (d)$. Let $x \in X$ and U be a neighbourhood of $f(x)$. Then by hypothesis, $V = f^{-1}(U)$ is weakly $\sigma_{\mathcal{H}}$ -neighbourhood of x and $f(V) = f(f^{-1}(U)) \subset U$.

 $(d) \Rightarrow (e)$. Let A be a subset of X such that $f(x) \notin c_{\lambda}(f(A))$. Then, there exists a λ -open subset V of Y containing $f(x)$ such that $V \cap f(A) = \emptyset$. By hypothesis there exists a μ -open U such that $f(x) \in f(U) \subset V$. Hence $f(U) \cap f(A) = \emptyset$ implies $U \cap A = \emptyset$. Consequently $x \notin c_{\mu}(A)$ and $f(x) \notin f(c_{\mu}(A))$. Hence $f(c_{\mu}(A)) \subset c_{\lambda}(f(A))$.

(e) \Rightarrow (f). Let B be a subset of Y. By hypothesis, we obtain $f(c_\mu(f^{-1}(B))) \subset c_\lambda(f(f^{-1}(B)))$. Thus $c_\mu(f^{-1}(B)) \subset$ $f^{-1}(c_\lambda(B)).$

 $(e) \Rightarrow (a)$. Let F be a λ -closed subset of Y. Since $c_{\lambda}(F) = F$ and by hypothesis $f(c_{\mu}(f^{-1}(F))) \subset c_{\lambda}(f(f^{-1}(F))) \subset c_{\lambda}(F) = F$. This shows that $c_{\mu}(f^{-1}(F)) \subset f^{-1}(F)$ and so $f^{-1}(F)$ is weakly σ -H-closed. \Box

Definition 3.9. *A function* $f : (X, \mu) \to (Y, \lambda, \mathcal{H})$ *is said to be weakly* $(\sigma, \lambda_{\mathcal{H}})$ *-open* (*resp. weakly* $(\sigma, \lambda_{\mathcal{H}})$ *-closed*) *if the image of every* μ -open (*resp.* μ -closed) *in* (X, μ) *is weakly* σ -*H*-open (*resp.* weakly σ -*H*-closed) *in* $(Y, \lambda, \mathcal{H})$.

Proposition 3.10. For a bijective function $f : (X, \mu) \to (Y, \lambda, \mathcal{H})$, the following hold.

- (a) f^{-1} is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (b) f *is weakly* $(\sigma, \lambda_{\mathcal{H}})$ -open.
- (c) f *is weakly* $(\sigma, \lambda_{\mathcal{H}})$ -closed.

Theorem 3.11. *A function* $f : (X, \mu) \to (Y, \lambda, \mathcal{H})$ *is weakly* $(\sigma, \lambda_{\mathcal{H}})$ -open if and only if for each subset $W \subset Y$ and each μ -closed F of X containing $f^{-1}(W)$, there exists weakly σ -H-closed $H \subset Y$ containing W such that $f^{-1}(H) \subset F$.

Proof. Let $H = Y - f(X - F)$. Since $f^{-1}(W) \subset F$, we have $f(X - F) \subset Y - W$. Since f is weakly (σ, λ_H) -open, then H is weakly σ -H-closed and $f^{-1}(H) = X - f^{-1}(f(X - F)) \subset X - (X - F) = F$.

Conversely, let U be any μ -open of X and $W = Y - f(U)$. Then $f^{-1}(W) = X - f^{-1}(f(U)) \subset X - U$ and $X - U$ is μ-closed. By the hypothesis, there exists weakly σ-H-closed H of Y containing W such that $f^{-1}(H)$ ⊂ X – U. Then, we have $f^{-1}(H) \cap U = \emptyset$ and $H \cap f(U) = \emptyset$. Thus, we obtain $Y - f(U) \supset H \supset W = Y - f(U)$ and $f(U)$ is weakly σ -H-open in Y. Hence f is weakly $(\sigma, \lambda_{\mathcal{H}})$ -open. \Box

Corollary 3.12. If $f : (X, \mu) \to (Y, \lambda, \mathcal{H})$ is weakly $(\sigma, \lambda_{\mathcal{H}})$ -open, then $f^{-1}(i_{\lambda}^*(c_{\lambda}(i_{\lambda}(B)))) \subset c_{\mu}(f^{-1}(B))$ for each subset $B \subset Y$,

Proof. Let B be a subset of Y, then $c_{\mu}(f^{-1}(B))$ is μ -closed in X. By Theorem 3.11, there exists weakly σ -H-closed $H \subset Y$ containing B such that $f^{-1}(H) \subset c_{\mu}(f^{-1}(B))$. Since $Y - H$ is weakly σ -H-open, $f^{-1}(Y - H) \subset f^{-1}(c_{\lambda}^*(i_{\lambda}(c_{\lambda}(Y - B)))$ H()))) and $X - f^{-1}(H) \subset f^{-1}(Y - i \chi(c_{\lambda}(i_{\lambda}(H)))) = X - f^{-1}(i \chi(c_{\lambda}(i_{\lambda}(H))))$. Hence we obtain that $f^{-1}(i \chi(c_{\lambda}(i_{\lambda}(B)))) \subset$ $f^{-1}(i_{\lambda}^*(c_{\lambda}(i_{\lambda}(H)))) \subset f^{-1}(H) \subset c_{\mu}(f^{-1}(B))$. Therefore, we have $f^{-1}(i_{\lambda}^*(c_{\lambda}(i_{\lambda}(B)))) \subset c_{\mu}(f^{-1}(B))$. \Box

References

- [1] A.Cs´asz´ar, *Generalized topology, generalized continuity*, Acta Math. Hungar., 96(2002), 351-357.
- [2] A.Császár, *Modification of generalized topologies via hereditary classes*, Acta Math. Hungar., 115(2007), 29-36.
- [3] A.Cs´asz´ar, *Generalized open sets in generalized topologies*, Acta Math. Hungar., 106(1-2)(2005), 53-66.
- [4] A.Császár, *Weak structures*, Acta Math. Hungar., (2010), 1-3.
- [5] D.Jankovic and T.R.Hamlett, *New topologies from old via ideals*, Amer. Math. Monthly, 97(1990), 295-310.
- [6] A.Cs´asz´ar, *Remarks on quasi topologies*, Acta Math. Hungar., 119(1-2)(2008), 197-200.
- [7] R.Ramesh and R. Mariappan, *Generalized open sets in hereditary generalized topological spaces*, International Journal of Mathematical and computational Science, 5(2)(2015), 149-159.
- [8] M.Murugalingam, R.Ramesh and R.Mariappan, b*-*H*-open sets and continuity via hereditary classes*, International Journal of Mathematical Archive.
- [9] Y.K.Kim and W.K.Kim, *On operations Induced by Hereditary Classes on Generalized Topological Spaces*, Acta Math. Hungar., 137(1-2)(2012), 130-138.
- [10] R.Jamunarani and P. Jeyanthi, *Regular sets in generalized topological spaces*, Acta Math. Hungar., DOI:10.1007/s10474- 011-0179-7.