ISSN: 2394-5745

Available Online: http://ijcrst.in/

International Journal of Current Research in Science and Technology

Weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuity in Generalized Topologies

Research Article

R.Mariappan^{1*} and M.Murugalingam²

- 1 Department of Science and Humanities, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, India.
- 2 Department of Mathematics, Thiruvalluvar College, Papanasam, Tamil Nadu, India.

Abstract: In this paper, we introduce and study the notions of weakly σ - \mathcal{H} -open sets and weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuity in a hereditary generalized topological space. Also we prove that a function $f:(X,\mu,\mathcal{H})\to (Y,\lambda)$ is (μ,λ) -continuous if and only if f is weakly $(\sigma_{\mathcal{H}},\lambda)$ -continuous and strong $(S_{\mathcal{H}},\lambda)$ -continuous.

MSC: 54A05.

Keywords: Generalized topology, hereditary class, α - \mathcal{H} -open, β - \mathcal{H} -open and $(\sigma_{\mathcal{H}}, \lambda)$ -continuity.

© JS Publication.

1. Introduction and Preliminaries

A family μ of subset of X is called a generalized topology(GT)[1] if $\emptyset \in \mu$ and closed under arbitrary union. The generalized topology μ is said to be strong [10], if $X \in \mu$. (X, μ) is called a quasi topology [6], if μ is closed under finite intersection. A subset A of a generalized topological space (X, μ) is called μ - σ -open [3] (resp. μ - π -open [3], μ - α -open [3], μ - β -open [3]) if $A \subset c_{\mu}(i_{\mu}(A))$ (resp. $A \subset i_{\mu}(c_{\mu}(A))$ $A \subset i_{\mu}(c_{\mu}(i_{\mu}(A)))$, $A \subset c_{\mu}(i_{\mu}(c_{\mu}(A)))$. c_{σ} is the intersection of all μ - σ -closed set containing A. A function $f:(X,\mu,\mathcal{H})\to (Y,\lambda)$ is said to be (μ,λ) -continuous if for every λ -open set U in Y implies that $f^{-1}(U)$ is μ -open set in X. A hereditary class \mathcal{H} of X is non-empty collection of subset of X such that $A \subset B$, $B \in \mathcal{H}$ implies $A \in \mathcal{H}$ [2]. In the paper [2], for a hereditary class \mathcal{H} , the operator ()*:exp $X \to \exp X$ was introduced. An operator c_{μ}^* : exp $X \to \exp X$ was defined by using the operator ()* (i.e., for $A \subset X$) $c_{\mu}^*(A) = A \cup A^*$, which is monotonic, enlarging and idempotent. Some properties of operators ()* and c_{μ}^* were investigated in [2]. For every subset A of X, with respect to μ and a hereditary class \mathcal{H} of subset of X, then $\mu^* = \{A \subset X/c_{\mu}^*(X-A) = X-A\}$ is generalized topology[2], and $i_{\mu}^*(A)$ will denote the interior of A in (X,μ^*) . A subset A of a hereditary generalized topological space (X,μ,\mathcal{H}) is said to be α - \mathcal{H} -open [2](resp. β - \mathcal{H} -open [2], σ - \mathcal{H} -open, π - \mathcal{H} -open [2], δ - \mathcal{H} -open [2], t-t-open [2], t-t-set [7]) if $A \subseteq i_{\mu}(c_{\mu}^*(i_{\mu}(A))$) (resp. $A \subseteq c_{\mu}(i_{\mu}(c_{\mu}^*(A))$), $A \subseteq c_{\mu}^*(i_{\mu}(A)$), $A \subseteq c_{\mu}^*(i_{\mu}(A)$), $A \subseteq c_{\mu}^*(i_{\mu}(A))$, $A \subseteq c$

Lemma 1.1 ([2]). If (X, μ) is GTS with a hereditary class \mathcal{H} . If A and B are any two substs of X, then the following hold. (a) If $A \subset B$, then $A^* \subset B^*$.

- (b) $A^* = c_{\mu}^*(A) \subset c_{\mu}^*(A^*).$
- (c) If $A \subset A^*$, then $c_{\mu}(A) = A^* = c_{\mu}^*(A) = c_{\mu}^*(A^*)$.
- (d) If $U \in \mu$, then $U \cap A^* \subset (U \cap A)^*$.

 $^{^*}$ E-mail: mariappanbagavathi@gmail.com

Lemma 1.2 ([7]). If (X, μ) is quasi topology with a hereditary class \mathcal{H} . Then the following hold.

- (a) \mathcal{H} is μ -codense if and only if $A \subset A^*$ for every $A \in \mu$.
- (b) If $A \subset A^*$, then $A^* = c_{\mu}(A^*) = c_{\mu}(A) = c_{\mu}^*(A)$.

Lemma 1.3 ([9]). If (X, μ) is GTS with a hereditary class \mathcal{H} . For $A \subset X$,

- (a) $c_{\mu}^{*}(A) = X i_{\mu}^{*}(X A)$.
- (b) $i_{\mu}(A) \subset i_{\mu}^*(A) \subset A$.

2. Weakly σ - \mathcal{H} -open Set

Definition 2.1. A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be weakly σ - \mathcal{H} -open, if $A \subset c^*_{\mu}(i_{\mu}(c_{\mu}(A)))$. A subset A of X is said to be weakly σ - \mathcal{H} -closed if its complement is weakly σ - \mathcal{H} -open.

Proposition 2.2. In a hereditary generalized topological space (X, μ, \mathcal{H}) , the following hold.

- (a) Every α - \mathcal{H} -open is weakly σ - \mathcal{H} -open.
- (b) Every strong β - \mathcal{H} -open is weakly σ - \mathcal{H} -open.
- (c) Every σ - \mathcal{H} -open is weakly σ - \mathcal{H} -open.
- (d) Every π - \mathcal{H} -open is weakly σ - \mathcal{H} -open.

Theorem 2.3. Let (X, μ) be a quasi topology with a hereditary class \mathcal{H} and \mathcal{H} be a μ -codense and $A \subset X$. If A is σ - \mathcal{H} -open if and only if it is both weakly σ - \mathcal{H} -open and δ - \mathcal{H} -open.

Proof. Necessity: By Proposition 2.2, A is weakly σ - \mathcal{H} open. Now we prove that $i_{\mu}(c_{\mu}^{*}(A)) \subset c_{\mu}^{*}(i_{\mu}(A))$. Since A is σ - \mathcal{H} -open, implies that $A \subset c_{\mu}^{*}(i_{\mu}(A))$, so, $i_{\mu}(c_{\mu}^{*}(a_{\mu}(A))) \subset i_{\mu}(c_{\mu}^{*}(i_{\mu}(A))) \subset i_{\mu}(c_{\mu}^{*}(i_{\mu}(A))) \subset c_{\mu}^{*}(i_{\mu}(A))$. Hence A is δ - \mathcal{H} -open. Sufficiency: Let A be both δ - \mathcal{H} -open and weakly σ - \mathcal{H} -open. Then we have $A \subset c_{\mu}^{*}(i_{\mu}(c_{\mu}(A))) = c_{\mu}^{*}(i_{\mu}(c_{\mu}^{*}(A))) \subset c_{\mu}^{*}(i_{\mu}(A))$. Hence A is δ - \mathcal{H} -open.

Theorem 2.4. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then any arbitrary union of weakly σ - \mathcal{H} -open sets is weakly σ - \mathcal{H} -open.

Proof. Let U_{α} be weakly σ - \mathcal{H} -open for every $\alpha \in \Delta$, we have $U_{\alpha} \subset c_{\mu}^*(i_{\mu}(c_{\mu}(U_{\alpha})))$ for every $\alpha \in \Delta$. Then $\bigcup_{\alpha \in \Delta} U_{\alpha} \subset \bigcup_{\alpha \in \Delta} c_{\mu}^*(i_{\mu}(c_{\mu}(U_{\alpha}))) = \bigcup_{\alpha \in \Delta} ((i_{\mu}(c_{\mu}(U_{\alpha})))^* \cup i_{\mu}(c_{\mu}(U_{\alpha}))) \subset (\bigcup_{\alpha \in \Delta} i_{\mu}(c_{\mu}(U_{\alpha})))^* \cup (i_{\mu}(c_{\mu}(\bigcup_{\alpha \in \Delta} U_{\alpha}))) \subset (i_{\mu}(c_{\mu}(\bigcup_{\alpha \in \Delta} U_{\alpha})))$. Hence $\bigcup_{\alpha \in \Delta} U_{\alpha}$ is weakly σ - \mathcal{H} -open.

Remark 2.5. The following example shows that the intersection of weakly σ - \mathcal{H} -open sets need not be a weakly σ - \mathcal{H} -open set.

Example 2.6. Consider a hereditary generalized topological space (X, μ, \mathcal{H}) where $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{b\}, \{b, c\}, \{c, d\}, \{b, c, d\}\}$ and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}\}$. If $A = \{b, d\}$ and $B = \{c, d\}$, then $c_{\mu}^{*}(i_{\mu}(c_{\mu}(A))) = c_{\mu}^{*}(i_{\mu}(X)) = c_{\mu}^{*}(\{b, c, d\}) = X \supset A$ and $c_{\mu}^{*}(i_{\mu}(c_{\mu}(B))) = c_{\mu}^{*}(i_{\mu}(\{a, c, d\})) = c_{\mu}^{*}(\{c, d\}) = \{a, c, d\} \supset B$. Hence A and B are weakly σ - \mathcal{H} -open sets. But $c_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B))) = c_{\mu}^{*}(i_{\mu}(c_{\mu}(\{d\}))) = c_{\mu}^{*}(i_{\mu}(\{a, d\})) = c_{\mu}^{*}(\emptyset) = \emptyset \not\supseteq A \cap B$, so, $A \cap B$ is not weakly σ - \mathcal{H} -open.

Theorem 2.7. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A, B \subset X$. If A is weakly σ - \mathcal{H} -open and $B \in \mu$, then $A \cap B$ is weakly σ - \mathcal{H} -open.

Proof. If A is weakly σ - \mathcal{H} -open implies that $A \subset c_{\mu}^*(i_{\mu}(c_{\mu}(A)))$ and $i_{\mu}(B) = B$. Then $A \cap B \subset c_{\mu}^*(i_{\mu}(c_{\mu}(A))) \cap B = ((i_{\mu}(c_{\mu}(A)))^* \cup i_{\mu}(c_{\mu}(A))) \cap B = ((i_{\mu}(c_{\mu}(A)))^* \cap B) \cup (i_{\mu}(c_{\mu}(A)) \cap B) \subset (i_{\mu}(c_{\mu}(A)) \cap B)^* \cup (i_{\mu}(c_{\mu}(A)) \cap B) = (i_{\mu}(c_{\mu}(A)) \cap B) \cup (i_{\mu}(c_{\mu}(A)) \cap B)^* \cup (i_{\mu}(c_{\mu}(A)) \cap B) \cup (i_{\mu}(c_{\mu}(A)))^* \cup (i_{\mu}(c_{\mu}(A)) \cap B)) = c_{\mu}^*(i_{\mu}(c_{\mu}(A) \cap B)).$ Hence $A \cap B$ is weakly σ - \mathcal{H} -open.

Remark 2.8. The following theorem establish that, in the above result, μ -openness can be replaced by α - \mathcal{H} -openness.

Theorem 2.9. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A, B \subset X$. If A is weakly σ - \mathcal{H} -open and B is α - \mathcal{H} -open, then $A \cap B$ is weakly σ - \mathcal{H} -open.

Proof. Since A is α - \mathcal{H} -open implies $A \subset i_{\mu}(c_{\mu}^{*}(i_{\mu}(A)))$ and B is weakly σ - \mathcal{H} -open implies $B \subset c_{\mu}^{*}(i_{\mu}(c_{\mu}(B)))$. Then $A \cap B \subset c_{\mu}^{*}(i_{\mu}(c_{\mu}(A))) \cap i_{\mu}(c_{\mu}^{*}(i_{\mu}(B))) = ((i_{\mu}(c_{\mu}(A)))^{*} \cup (i_{\mu}(c_{\mu}(A)))^{*} \cup (i_{\mu}(c_{\mu}(A)))) \cap i_{\mu}(c_{\mu}^{*}(i_{\mu}(B))) = ((i_{\mu}(c_{\mu}(A)))^{*} \cap i_{\mu}(c_{\mu}^{*}(i_{\mu}(B)))) \cup (i_{\mu}(c_{\mu}(A)) \cap i_{\mu}(c_{\mu}^{*}(i_{\mu}(B)))) \cup (i_{\mu}(c_{\mu}(A)) \cap i_{\mu}(c_{\mu}^{*}(i_{\mu}(C_{\mu}(A)))) = (i_{\mu}(i_{\mu}(c_{\mu}(A))) \cap c_{\mu}^{*}(i_{\mu}(B)))^{*} \cup i_{\mu}(i_{\mu}(c_{\mu}(A)) \cap i_{\mu}(B)) \cup (i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A)) \cap i_{\mu}(B))))^{*} \cup i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A)) \cap i_{\mu}(B))) = (i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A) \cap i_{\mu}(B))))^{*} \cup i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A) \cap i_{\mu}(B)))) \cup (i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A) \cap i_{\mu}(B)))))^{*} \cup i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B)))) \cup (i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B))))^{*} \cup i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B)))) \cup (i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B)))))^{*} \cup i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B)))) \cup (i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B))))^{*} \cup i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B)))) \cup (i_{\mu}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B)))))^{*} \cup (i_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B)))))^{*} \cup (i_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B))))^{*} \cup (i_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B)))))^{*} \cup (i_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B))))^{*} \cup (i_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B))))^{*} \cup (i_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B))))^{*} \cup (i_{\mu}^{*}(i_{\mu}(c_{\mu}(A \cap B))))^{*} \cup (i_{\mu}^{*}(i_{\mu}^{*}(i_{\mu}(C_{\mu}(A \cap B)))))^{*} \cup (i_{\mu}^{*}(i_{\mu}^{*}(i_{\mu}(C_{\mu}(A \cap B))))^{*} \cup (i_{\mu}^{*}(i_{\mu}^{*}(i_{\mu}(C_{\mu}(A \cap B))))^{*} \cup (i_{\mu}^{*}(i_{\mu}^{*}(i_{\mu}(C_{\mu}(A \cap B))))^{*} \cup (i_{\mu}^{*}(i_{\mu}^{*}(i_{\mu}(C_{\mu}(A \cap B)$

Proposition 2.10. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A, B \subset X$. Then

- (a) If $A \subset B \subset c^*_{\mu}(A)$ and A is weakly σ -H-open, then B, A^* and B^* are weakly σ -H-open sets.
- (b) If $A \subset B \subset c_{\mu}^*(A)$ and A is π -H-open, then B is strong β -H-open.
- (c) If $A \subset B \subset c_{\mu}(A)$ and A is π -H-open, then B is β -H-open.

Proof. (a) Suppose that $A \subset B \subset c_{\mu}^*(A)$ and A is weakly σ - \mathcal{H} -open implies that $A \subset c_{\mu}^*(i_{\mu}(c_{\mu}(A)))$. Since $B \subset c_{\mu}^*(A) \subset c_{\mu}^*(i_{\mu}(c_{\mu}(A))) \subset c_{\mu}^*(i_{\mu}(c_{\mu}(B)))$. Hence B is weakly σ - \mathcal{H} -open. Since $A \subset B \subset A^*$, we have B,A^* and B^* are weakly σ - \mathcal{H} -open sets.

- (b) Suppose $A \subset B \subset c_{\mu}^*(A)$ and A is π - \mathcal{H} -open implies that $A \subset i_{\mu}(c_{\mu}^*(A))$. Now $B \subset c_{\mu}^*(A) \subset c_{\mu}^*(i_{\mu}(c_{\mu}^*(A))) \subset c_{\mu}^*(i_{\mu}(c_{\mu}^*(B)))$. Hence B is strong β - \mathcal{H} -open.
- (c) Suppose $A \subset B \subset c_{\mu}(A)$ and A is π - \mathcal{H} -open implies that $A \subset i_{\mu}(c_{\mu}^{*}(A))$. Now $B \subset c_{\mu}(A) \subset c_{\mu}(i_{\mu}(c_{\mu}^{*}(A))) \subset c_{\mu}(i_{\mu}(c_{\mu}^{*}(B)))$. Hence B is β - \mathcal{H} -open.

Corollary 2.11. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. Then the following hold.

- (a) If A is weakly σ -H-open, then $c_{\mu}^*(A)$ and $c_{\mu}^*(i_{\mu}(c_{\mu}^*(A)))$ are weakly σ -H-open sets.
- (b) If A is π -H-open, then $c^*_{\mu}(A)$ and $c^*_{\mu}(i_{\mu}(c^*_{\mu}(A)))$ are strong β -H-open sets.

Corollary 2.12. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$ be a weakly σ - \mathcal{H} -open. Then the following hold.

- (a) If A is $A \subset A^*$, then A^* is weakly σ - \mathcal{H} -open.
- (b) If A is $A = A^*$, then every subset containing A is strong β -H-open.

Theorem 2.13. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. If $\mu = \{\emptyset\}$ (resp. $P(X), \mathcal{N}$), then the set of all weakly σ - \mathcal{H} -open sets is same as the set of all μ - β -open sets (resp. the set of all weakly σ - \mathcal{H} -open sets is same as the set of all μ - β -open sets).

Proof. (i) If $\mathcal{H} = \{\emptyset\}$ then $A^* = c_{\mu}(A)$ and hence $c_{\mu}^*(A) = A \cup A^* = c_{\mu}(A)$ for every subset A of (X, μ, \mathcal{H}) . Therefore, $c_{\mu}^*(i_{\mu}(c_{\mu}(A))) = c_{\mu}(i_{\mu}(c_{\mu}(A)))$.

- (ii) Let $\mathcal{H} = P(X)$, then $A^* = \emptyset$ and $c_{\mu}^*(A) = A$ for every subset A of X. Therefore, $c_{\mu}^*(i_{\mu}(c_{\mu}(A))) = i_{\mu}(c_{\mu}(A))$.
- (iii) Let $\mathcal{H} = \mathcal{N}$, then $A^* = c_{\mu}(i_{\mu}(c_{\mu}(A)))$ for every subset A of X. Therefore, we have $c_{\mu}^*(i_{\mu}(c_{\mu}(A))) = (i_{\mu}(c_{\mu}(A)))^* \cup i_{\mu}(c_{\mu}(A)) = c_{\mu}(i_{\mu}(c_{\mu}(a_{\mu}(A)))) \cup i_{\mu}(c_{\mu}(A)) = c_{\mu}(i_{\mu}(c_{\mu}(A)))$. Hence $c_{\mu}^*(i_{\mu}(c_{\mu}(A))) = c_{\mu}(i_{\mu}(c_{\mu}(A)))$.

Definition 2.14. A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a strong σ - \mathcal{H} -open if $A \subset c_{\mu}^*(i_{\mu}(A^*))$.

Proposition 2.15. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. Then the following are equivalent.

- (a) A is strong σ - \mathcal{H} -open.
- (b) A is both strong β -H-open and strong σ -H-open.
- (c) A is both weakly σ - \mathcal{H} -open and strong σ - \mathcal{H} -open.
- (d) A is both weakly σ - \mathcal{H} -open and $A \subset A^*$.

Corollary 2.16. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space where \mathcal{H} is μ -codense and $A \subset X$. If $A \subset A^*$, then the following are equivalent.

- (a) A is strong σ - \mathcal{H} -open.
- (b) A is strong β - \mathcal{H} -open.
- (c) A is β - \mathcal{H} -open.
- (d) A is μ - β -open.
- (e) A is weakly σ - \mathcal{H} -open.

Theorem 2.17. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A, B \subset X$. If A is strong σ - \mathcal{H} -open and B is α - \mathcal{H} -open, then $A \cap B$ is σ - \mathcal{H} -open.

Proof. A is strong σ - \mathcal{H} -open implies that $A \subset c^*_{\mu}(i_{\mu}(A^*))$ and B is α - \mathcal{H} -open implies that $B \subset i_{\mu}(c^*_{\mu}(i_{\mu}(B)))$. Now, $A \cap B \subset c^*_{\mu}(i_{\mu}(A^*)) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B))) = ((i_{\mu}(A^*))^* \cup i_{\mu}(A^*)) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B))) = ((i_{\mu}(A^*))^* \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B)))) \cup (i_{\mu}(A^*) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(B)))) \cup (i_{\mu}(A^*) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(A^*) \cap i_{\mu}(B)))) \cup (i_{\mu}(A^*) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(A^*) \cap i_{\mu}(B)))) \cup (i_{\mu}(a^*_{\mu}(i_{\mu}(A^*) \cap i_{\mu}(B))))) \cup (i_{\mu}(a^*_{\mu}(i_{\mu}(A^*) \cap i_{\mu}(B)))) \cup (i_{\mu}(a^*_{\mu}(i_{\mu}(A^*) \cap i_{\mu}(B))))) \cup (i_{\mu}(a^*_{\mu}(i_{\mu}(A^*) \cap i_{\mu}(B)))) \cup (i_{\mu}(a^*_{\mu}(i_{\mu}(A^*) \cap i_{\mu}(B))) \cup (i_{\mu}(a^*_{\mu}(A^*) \cap i_{\mu}(B))) \cup (i_{\mu}(a$

Proposition 2.18. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. If A is weakly σ - \mathcal{H} -open, then A is μ - β -open.

Example 2.19. Consider a hereditary generalized topological space (X, μ, \mathcal{H}) where $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, X\}$ and $\mathcal{H} = \{\emptyset, \{d\}\}$. If $A = \{a, b\}$, then $c_{\mu}(i_{\mu}(c_{\mu}(A))) = c_{\mu}(i_{\mu}(\{a, b, d\})) = c_{\mu}(\{b, d\}) = \{a, b, d\} \supset A$. Hence A is weakly μ - β -open. But $c_{\mu}^*(i_{\mu}(c_{\mu}(A))) = c_{\mu}^*(i_{\mu}(\{a, b, d\})) = c_{\mu}^*(\{b, d\}) = \{b, d\} \not\supseteq A$, so, A is not weakly σ - \mathcal{H} -open.

Theorem 2.20. Let (X, μ, \mathcal{H}) be a quasi topology with hereditary class \mathcal{H} and \mathcal{H} is μ -codense and $A \subset X$. Then A is μ - β -open if and only if A is weakly σ - \mathcal{H} -open.

Proof. By Proposition 2.18, every weakly σ - \mathcal{H} -open is μ - β -open. Conversely, if A is μ - β -open implies that $A \subset c_{\mu}(i_{\mu}(c_{\mu}(A)))$. By Lemmas 1.2, $c_{\mu}(i_{\mu}(c_{\mu}(A))) = c_{\mu}^{*}(i_{\mu}(c_{\mu}(A)))$ and so $A \subset c_{\mu}^{*}(i_{\mu}(c_{\mu}(A)))$. Hence A is weakly σ - \mathcal{H} -open. \square

Theorem 2.21. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. Then A is weakly σ - \mathcal{H} -closed set if and only if $i_{\mu}^*(c_{\mu}(i_{\mu}(A))) \subset A$.

Proof. If A is weakly σ - \mathcal{H} -closed set, then X-A is weakly σ - \mathcal{H} -open and hence X- $A \subset c^*_{\mu}(i_{\mu}(c_{\mu}(X-A))) = X$ - $i^*_{\mu}(c_{\mu}(i_{\mu}(A)))$. Therefore $i^*_{\mu}(c_{\mu}(i_{\mu}(A))) \subset A$. Coversely, let $i^*_{\mu}(c_{\mu}(i_{\mu}(A))) \subset A$. Then X- $A \subset c^*_{\mu}(i_{\mu}(c_{\mu}(X-A)))$. Hence X-A is weakly σ - \mathcal{H} -open. Thus A is weakly σ - \mathcal{H} -closed set.

Definition 2.22. A subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a strong S- \mathcal{H} -set if $c^*_{\mu}(i_{\mu}(c_{\mu}(A))) = i_{\mu}(A).A$ subset A of a hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a strong $S_{\mathcal{H}}$ -set if $A = U \cap V$, where $U \in \mu$ and V is strong S- \mathcal{H} -set.

Proposition 2.23. In a hereditary generalized topological space (X, μ, \mathcal{H}) , the following hold.

- (a) Every strong S-H-set is S-H-set,
- (b) Every strong $S_{\mathcal{H}}$ -set is $S_{\mathcal{H}}$ -set.

Proof. (a) If A is strong S-H-set, then $c_{\mu}^{*}(i_{\mu}(c_{\mu}(A))) = i_{\mu}(A)$. Now $i_{\mu}(A) \subset ((i_{\mu}(A))^{*} \cup i_{\mu}(A) = c_{\mu}^{*}(i_{\mu}(A))$ and $c_{\mu}^{*}(i_{\mu}(A)) = c_{\mu}^{*}(c_{\mu}^{*}(i_{\mu}(c_{\mu}(A)))) \subset c_{\mu}^{*}(i_{\mu}(c_{\mu}(A))) = i_{\mu}(A)$. Hence A is S-H-set.

(b) Obvious. \Box

Proposition 2.24. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. Then A is S- \mathcal{H} -set if and only if $(i_{\mu}(A))^* \subset i_{\mu}(A)$.

Proof. If A is S-H-set, then $c_{\mu}^*(i_{\mu}(A)) = i_{\mu}(A)$, so $(i_{\mu}(A))^* \cup i_{\mu}(A) = i_{\mu}(A)$. Hence $(i_{\mu}(A))^* \subset i_{\mu}(A)$. Converse is obvious.

Proposition 2.25. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space where \mathcal{H} is μ -codense and $A \subset X$. If A is S- \mathcal{H} -set, then $(i_{\mu}(A))^* = i_{\mu}(A)$.

Proof. Since A is S-H-set, $c^*_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$. Now $c^*_{\mu}(i_{\mu}(A)) = c_{\mu}(i_{\mu}(A)) = (i_{\mu}(A))^*$. Therefore $i_{\mu}(A) = (i_{\mu}(A))^*$.

Remark 2.26. The following example shows that the converse of above theorem need not be true.

Example 2.27. Let $X = \{a, b, c, d, e\}$, $\mu = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}, \{c, d, e\}, \{a, c, d, e\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}, \{c\}\}\}$. The hereditary class \mathcal{H} is not codense. If $A = \{a\}$, then A is S- \mathcal{H} -set and $(i_{\mu}(A))^* = (\{a\}^*) = \emptyset \neq i_{\mu}(A)$.

Proposition 2.28. Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and $A \subset X$. A μ -closed set A is strong S- \mathcal{H} -set if and only if A is S- \mathcal{H} -set.

Proof. By propostion 2.23, every strong S- \mathcal{H} -set is S- \mathcal{H} -set. Conversely, if A is S- \mathcal{H} -set, then $i_{\mu}(A) = c_{\mu}^{*}(i_{\mu}(A)) = c_{\mu}^{*}(i_{\mu}(c_{\mu}(A)))$. Hence A is strong S- \mathcal{H} -set.

Remark 2.29. The following example shows that the notions weakly σ - \mathcal{H} -open and strong $S_{\mathcal{H}}$ - set are independent.

Example 2.30. Consider a hereditary generalized topological space (X, μ, \mathcal{H}) where $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{b\}, \{b, c\}, \{c, d\}, \{a, d\}, \{b, c, d\}\}$ and $\mathcal{H} = \{\emptyset, \{a\}, \{b\}\}$. Then

- (i) If $A = \{a, c\}$, then $c_{\mu}^*(i_{\mu}(c_{\mu}(A))) = c_{\mu}^*(i_{\mu}(\{a, c, d\})) = c_{\mu}^*(\{c, d\}) = \{a, c, d\} \supset A$. Hence A is weakly σ - \mathcal{H} -open. But A is not strong $S_{\mathcal{H}}$ -set.
- (ii) If $A = \{d\}$, then $A = U \cap V$ where $U = \{c, d\}$ is μ -open and $V = \{a, d\}$ is strong $S_{\mathcal{H}}$ -set. But $c_{\mu}^*(i_{\mu}(c_{\mu}(A))) = c_{\mu}^*(i_{\mu}(\{a, d\})) = c_{\mu}(\emptyset) = \emptyset \not\supseteq A$, so, A is not a weakly σ - \mathcal{H} -open.

Theorem 2.31. In a strong hereditary generalized topological space (X, μ, \mathcal{H}) , the following are equivalent:

- (a) A is μ -open.
- (b) A is weakly σ - \mathcal{H} -open and strong $S_{\mathcal{H}}$ -set.
- (c) A is σ -H-open and $S_{\mathcal{H}}$ -set.

Proof. $(a) \Rightarrow (b)$ Obvious.

 $(b) \Rightarrow (a)$ If A is weakly σ - \mathcal{H} -open and also a strong $S_{\mathcal{H}}$ -set. Then $A \subset c_{\mu}^*(i_{\mu}(c_{\mu}(A))) = c_{\mu}^*(i_{\mu}(c_{\mu}(U \cap V)))$, where $U \in \mu$ and V is strong S- \mathcal{H} -set. Hence $A \subset U \cap A \subset U \cap (c_{\mu}^*(i_{\mu}(c_{\mu}(U))) \cap c_{\mu}^*(i_{\mu}(c_{\mu}(V)))) = U \cap i_{\mu}(V) = i_{\mu}(U \cap V) = i_{\mu}(A)$. This shows that A is μ -open.

$$(b) \Rightarrow (c)$$
 Obvious.

3. Generalized Weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous Functions

Definition 3.1. A function $f:(X,\mu,\mathcal{H})\to (Y,\lambda)$ is said to be weakly $(\sigma_{\mathcal{H}},\lambda)$ -continuous (resp. strong $(S_{\mathcal{H}},\lambda)$ -continuous) if $f^{-1}(V)$ is weakly σ - \mathcal{H} -open (resp. strong $S_{\mathcal{H}}$ -set) in (X,μ,\mathcal{H}) for every μ -open V of (Y,λ) .

Proposition 3.2. For a function $f:(X,\mu,\mathcal{H})\to (Y,\lambda)$, the following hold.

- (a) Every (μ, λ) -continuous is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (b) Every $(\alpha_{\mathcal{H}}, \lambda)$ -continuous is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (c) Every strong $(\beta_{\mathcal{H}}, \lambda)$ -continuous is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (d) Every $(\sigma_{\mathcal{H}}, \lambda)$ -continuous is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (e) Every $(\pi_{\mathcal{H}}, \lambda)$ -continuous is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.

Proof. It follows from Proposition 2.2.

Theorem 3.3. For a function $f:(X,\mu,\mathcal{H})\to (Y,\lambda)$, the following equivalent.

- (a) f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (b) For each $x \in X$ and each λ -open V containing f(x), there exists weakly σ - \mathcal{H} -open U such that $f(U) \subset V$.

Proof. Let $x \in X$ and V be λ -open set of Y containing f(x). Take $W = f^{-1}(V)$, then by Definition W is weakly σ - \mathcal{H} -open containing x and $f(W) \subset V$.

Conversely, let F be a λ -closed set of Y. Take V = Y - F, then V is μ -open in Y. Let $x \in f^{-1}(V)$, by hypothesis , there exists a weakly σ - \mathcal{H} -open W of X containing x such that $f(W) \subset V$. Thus, we obtain $x \in W \subset c_{\mu}^*(i_{\mu}(c_{\mu}(W))) \subset c_{\mu}^*(i_{\mu}(c_{\mu}(f^{-1}(V))))$ and hence $f^{-1}(V) \subset c_{\mu}^*(i_{\mu}(c_{\mu}(V)))$. This shows that $f^{-1}(V)$ is weakly σ - \mathcal{H} -open in X. Hence $f^{-1}(F) = X - f^{-1}(Y - F) = X - f^{-1}(V)$ is weakly σ - \mathcal{H} -closed set in X.

Theorem 3.4. Let $f:(X,\mu,\mathcal{H}_1) \to (Y,\lambda,\mathcal{H}_2)$ and $g:(Y,\lambda,\mathcal{H}_2) \to (Z,\eta)$ be two functions, where \mathcal{H}_1 and \mathcal{H}_2 are hereditary classes on X, Y and Z respectively. Then $g \circ f$ is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous if f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous and g is (λ, η) -continuous.

Proof. Let U be any η -open in Z. Since g is (λ, η) -continuous, $g^{-1}(U)$ is λ -closed in Y. Since f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is weakly σ - \mathcal{H} -open in X. Hence $g \circ f$ is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.

Proposition 3.5. Let (X, μ, \mathcal{H}) and (Y, λ) be hereditary generalized topological space and generalized topology respectively. Then a function $f: (X, \mu, \mathcal{H}) \to (Y, \lambda)$, the following are equivalent.

(a) f is (μ, λ) -continuous.

- (b) f is $(\sigma_{\mathcal{H}}, \lambda)$ -continuous and $(S_{\mathcal{H}}, \lambda)$ -continuous.
- (c) f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous and strong $(S_{\mathcal{H}}, \lambda)$ -continuous.

Proof. It is obvious from Theorem 2.31.

Theorem 3.6. A function $f:(X,\mu,\mathcal{H})\to (Y,\lambda)$ is weakly $(\sigma_{\mathcal{H}},\lambda)$ -continuous if and only if $f^{-1}(U)$ is weakly σ - \mathcal{H} -closed in (X,μ,\mathcal{H}) , for every λ -closed U in (Y,λ) .

Proof. Let f be weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous and F be a λ -closed set in (Y, λ) . Then Y - F is λ -open in (Y, λ) . Since f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous, $f^{-1}(Y - F)$ is weakly σ - \mathcal{H} -open in (X, μ, \mathcal{H}) . But $f^{-1}(Y - F) = X - f^{-1}(F)$ and so $f^{-1}(F)$ is weakly σ - \mathcal{H} -closed in (X, μ, \mathcal{H}) . Coversely, assume that $f^{-1}(F)$ is weakly σ - \mathcal{H} -closed in (X, μ, \mathcal{H}) for every λ -closed set in F in (Y, λ) . Let V be a λ -open in (Y, λ) . Then Y - V is λ -closed in (Y, λ) and by hypothesis $f^{-1}(Y - F)$ is weakly σ - \mathcal{H} -closed in (X, μ, \mathcal{H}) . Since $f^{-1}(Y - V) = X - f^{-1}(V)$, we have $f^{-1}(V)$ is weakly σ - \mathcal{H} -open in (X, μ, \mathcal{H}) , and so f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.

Definition 3.7. Let x be any element of a hereditary generalized topological space (X, μ, \mathcal{H}) and $V \subset X$. Then V is said to be weakly $\sigma_{\mathcal{H}}$ -neighbourhood of x in X if there exists weakly $\sigma_{\mathcal{H}}$ -open U of X such that $x \in U \subset V$.

Theorem 3.8. For a function $f:(X,\mu,\mathcal{H})\to (Y,\lambda)$, the following are equivalent.

- (a) f is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (b) the inverse image of each λ -closed set is weakly σ - \mathcal{H} -closed.
- (c) for each x in X, the inverse of every λ -neighbourhood of f(x) is weakly $\sigma_{\mathcal{H}}$ -neighbourhood of x in X.
- (d) For each x in X and every λ -open U containing f(x), there exists weakly σ - \mathcal{H} -open V containing x such that $f(V) \subset U$.
- (e) $f(c_{\mu}(A)) \subset c_{\lambda}(f(A))$ for every subset A of X.
- (f) $c_{\mu}(f^{-1}(B)) \subset f^{-1}(c_{\lambda}(B))$ for every subset B of Y.

Proof. $(a) \Leftrightarrow (b)$ This follows from Theorem 3.6.

- $(b) \Rightarrow (c)$. Let $x \in X$. Assume that V be a neighbourhood of f(x). Then there exists a λ -open U in Y such that $f(x) \in U \subset V$. Consequently $f^{-1}(U)$ is weakly σ - \mathcal{H} -open in X and $x \in f^{-1}(U) \subset f^{-1}(V)$ is weakly $\sigma_{\mathcal{H}}$ -neighbourhood of x.
- $(c) \Rightarrow (d)$. Let $x \in X$ and U be a neighbourhood of f(x). Then by hypothesis, $V = f^{-1}(U)$ is weakly $\sigma_{\mathcal{H}}$ -neighbourhood of x and $f(V) = f(f^{-1}(U)) \subset U$.
- $(d) \Rightarrow (e)$. Let A be a subset of X such that $f(x) \notin c_{\lambda}(f(A))$. Then, there exists a λ -open subset V of Y containing f(x) such that $V \cap f(A) = \emptyset$. By hypothesis there exists a μ -open U such that $f(x) \in f(U) \subset V$. Hence $f(U) \cap f(A) = \emptyset$ implies $U \cap A = \emptyset$. Consequently $x \notin c_{\mu}(A)$ and $f(x) \notin f(c_{\mu}(A))$. Hence $f(c_{\mu}(A)) \subset c_{\lambda}(f(A))$.
- $(e) \Rightarrow (f)$. Let B be a subset of Y. By hypothesis, we obtain $f(c_{\mu}(f^{-1}(B))) \subset c_{\lambda}(f(f^{-1}(B)))$. Thus $c_{\mu}(f^{-1}(B)) \subset f^{-1}(c_{\lambda}(B))$.
- (e) \Rightarrow (a). Let F be a λ -closed subset of Y. Since $c_{\lambda}(F) = F$ and by hypothesis $f(c_{\mu}(f^{-1}(F))) \subset c_{\lambda}(f(f^{-1}(F))) \subset c_{\lambda}(F) = F$. This shows that $c_{\mu}(f^{-1}(F)) \subset f^{-1}(F)$ and so $f^{-1}(F)$ is weakly σ - \mathcal{H} -closed.

Definition 3.9. A function $f:(X,\mu) \to (Y,\lambda,\mathcal{H})$ is said to be weakly $(\sigma,\lambda_{\mathcal{H}})$ -open (resp. weakly $(\sigma,\lambda_{\mathcal{H}})$ -closed) if the image of every μ -open (resp. μ -closed) in (X,μ) is weakly σ - \mathcal{H} -open (resp. weakly σ - \mathcal{H} -closed) in (Y,λ,\mathcal{H}) .

Proposition 3.10. For a bijective function $f:(X,\mu)\to (Y,\lambda,\mathcal{H})$, the following hold.

- (a) f^{-1} is weakly $(\sigma_{\mathcal{H}}, \lambda)$ -continuous.
- (b) f is weakly $(\sigma, \lambda_{\mathcal{H}})$ -open.
- (c) f is weakly $(\sigma, \lambda_{\mathcal{H}})$ -closed.

Theorem 3.11. A function $f:(X,\mu) \to (Y,\lambda,\mathcal{H})$ is weakly $(\sigma,\lambda_{\mathcal{H}})$ -open if and only if for each subset $W \subset Y$ and each μ -closed F of X containing $f^{-1}(W)$, there exists weakly σ - \mathcal{H} -closed $H \subset Y$ containing W such that $f^{-1}(H) \subset F$.

Proof. Let H = Y - f(X - F). Since $f^{-1}(W) \subset F$, we have $f(X - F) \subset Y - W$. Since f is weakly $(\sigma, \lambda_{\mathcal{H}})$ -open, then H is weakly σ - \mathcal{H} -closed and $f^{-1}(H) = X - f^{-1}(f(X - F)) \subset X - (X - F) = F$.

Conversely, let U be any μ -open of X and W = Y - f(U). Then $f^{-1}(W) = X - f^{-1}(f(U)) \subset X - U$ and X - U is μ -closed. By the hypothesis, there exists weakly σ - \mathcal{H} -closed H of Y containing W such that $f^{-1}(H) \subset X - U$. Then, we have $f^{-1}(H) \cap U = \emptyset$ and $H \cap f(U) = \emptyset$. Thus, we obtain $Y - f(U) \supset H \supset W = Y - f(U)$ and f(U) is weakly σ - \mathcal{H} -open in Y. Hence f is weakly $(\sigma, \lambda_{\mathcal{H}})$ -open.

Corollary 3.12. If $f:(X,\mu)\to (Y,\lambda,\mathcal{H})$ is weakly $(\sigma,\lambda_{\mathcal{H}})$ -open, then $f^{-1}(i_{\lambda}^*(c_{\lambda}(i_{\lambda}(B))))\subset c_{\mu}(f^{-1}(B))$ for each subset $B\subset Y$,

Proof. Let B be a subset of Y, then $c_{\mu}(f^{-1}(B))$ is μ -closed in X. By Theorem 3.11, there exists weakly σ - \mathcal{H} -closed $H \subset Y$ containing B such that $f^{-1}(H) \subset c_{\mu}(f^{-1}(B))$. Since Y - H is weakly σ - \mathcal{H} -open, $f^{-1}(Y - H) \subset f^{-1}(c_{\lambda}^{*}(i_{\lambda}(c_{\lambda}(Y - H))))$ and $X - f^{-1}(H) \subset f^{-1}(Y - i_{\lambda}^{*}(c_{\lambda}(i_{\lambda}(H)))) = X - f^{-1}(i_{\lambda}^{*}(c_{\lambda}(i_{\lambda}(H))))$. Hence we obtain that $f^{-1}(i_{\lambda}^{*}(c_{\lambda}(i_{\lambda}(B)))) \subset f^{-1}(i_{\lambda}^{*}(c_{\lambda}(i_{\lambda}(H)))) \subset f^{-1}(H) \subset c_{\mu}(f^{-1}(B))$. Therefore, we have $f^{-1}(i_{\lambda}^{*}(c_{\lambda}(i_{\lambda}(B)))) \subset c_{\mu}(f^{-1}(B))$.

References

- [1] A.Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351-357.
- [2] A.Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(2007), 29-36.
- [3] A.Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2)(2005), 53-66.
- [4] A.Császár, Weak structures, Acta Math. Hungar., (2010), 1-3.
- [5] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [6] A.Császár, Remarks on quasi topologies, Acta Math. Hungar., 119(1-2)(2008), 197-200.
- [7] R.Ramesh and R. Mariappan, Generalized open sets in hereditary generalized topological spaces, International Journal of Mathematical and computational Science, 5(2)(2015), 149-159.
- [8] M.Murugalingam, R.Ramesh and R.Mariappan, b-H-open sets and continuity via hereditary classes, International Journal of Mathematical Archive.
- [9] Y.K.Kim and W.K.Kim, On operations Induced by Hereditary Classes on Generalized Topological Spaces, Acta Math. Hungar., 137(1-2)(2012), 130-138.
- [10] R.Jamunarani and P. Jeyanthi, Regular sets in generalized topological spaces, Acta Math. Hungar., DOI:10.1007/s10474-011-0179-7.