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Abstract: The present study deals with the propagation of surface waves in the fluid saturated porous medium sandwiched between
magneto-elastic self-reinforced medium and heterogeneous isotropic half-space. Frequency equation of surface wave has
been obtained. Numerical results and particular cases have also been discussed. In the isotropic case, when heterogeneity,
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Effects of reinforcement, magneto-elastic coupling parameter and heterogeneity on phase velocity have been depicted by
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1. Introduction

Effects of earthquakes on artificial structures are of prime importance to engineers and architects. During an earthquake

and similar disturbances, a structure is excited into a more or less vibrant with oscillatory stress that depends upon both

the ground motion and physical properties of the structure. Most concrete construction includes nominal steel reinforcing

as given in the book of Richter [13].

This is potentially the strongest and most earthquake resistant type of construction. So, wave propagation in a reinforced

medium plays a very important role in the civil engineering and geophysics. The characteristic property of a self-reinforced

material is that its component act together as a single anisotropic unit as long as they remain in elastic condition, i.e. the

two components are bound together so that there is no relative displacement between them. There is sufficient evidence

in the literature that the Earth crust may contain some hard/soft rocks or material that may exhibit self-reinforcement

properties. The study of mineral explorations and geophysics also proves the existence of magnetic field and inhomogeneity

characteristic of the earth.
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The study of porous medium in recent time has acquired prime interest. The layer of the earth usually of such materials

and the medium is generally dealt under the name of poro-elastic medium. Investigation on propagation of waves in liq-

uid saturated porous solids are relevant to geophysical prospecting methods, survey techniques are very useful in oil industry.

The role of pore water in seismology has been emphasized in many studies. Biot [2] has established the theory of the

propagation of elastic waves in a porous elastic solid saturated by a viscous fluid. Biot [3] has developed the mathematical

theory for the propagation of elastic waves in a fluid saturated porous medium. The problem of magneto-elastic transverse

surface waves in self-reinforced elastic solids was studied by Verma et al. [12]. Chattopadhyay and Chaudhury [4] studied

the propagation of magnetoelastic shear waves in an infinite self-reinforced plate. The magnetic and thermal effect on shear

wave propagation is highlighted by Sethi and Gupta [11].

A detailed investigation has been made by Kumar and Hundal [10] to notice the propagation pattern of surface waves in

uniform liquid layer overlying a fluid saturated porous half space. The existence and asymptotic behavior of the surface

waves at a free interface of a saturated porous medium are investigated in the low frequency range by Edelman [7]. Gupta

et al. [9] have shown the effect of initial stress on propagation of Love waves in anisotropic porous layer. Chattopadhyay

and De [5] investigated the propagation of love waves in an isotropic fluid saturated porous layer with irregular interface.

Chattopadhyay et al. [6] have discussed the dispersion of G-type seismic wave in magnetoelastic self-reinforced layer.

The idea of our present paper is taken from this. In the present paper we have discussed the propagation of surface waves in

a fluid saturated porous medium sandwiched between magneto-elastic self-reinforced layer and a heterogeneous half-space.

2. Formulation and Solution of the Problem

We have considered an anisotropic fluid saturated porous layer of thickness H1, sandwiched between magneto-elastic self-

reinforced medium of finite width and heterogeneous isotropic half-spaces. The heterogeneity of the half-space has been

taken as

µ3 = µ0e
az

ρ3 = ρ0e
az

(1)

where µ3 and ρ3 are rigidity and density of the half-space respectively. The x-axis is taken horizontally in the direction of

wave propagation and z-axis is taken vertically downwards as shown in the Fig.1.

Figure 1. Geometry of the Problem
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2.1. Formulation and Solution for Upper Layer M1

We deduce the equation of motion for the propagation of surface wave in Magneto-elastic self-reinforced media and then

find its appropriate solution. The constitutive equations used in a self-reinforced linearly elastic model are [1]:

τij = λekkδij +2µT eij +α(akamekmδij + ekkaiaj)+2(µL −µT )(aiakekj +ajakeki)+βakamekmaiaj , i, j, k,m = 1, 2, 3. (2)

Where τij are components of stress, eijare components of infinitesimal strain, δij Kronecker delta, ai components of ~a, all

referred to rectangular Cartesian co-ordinates xi . ~a = (a1, a2, a3) is the preferred direction of reinforcement such that

a21 + a22 + a23 = 1. The vector ~amay be a function of position. Indices take the values 1, 2, 3 and summation convention

is employed. The coefficients λ, µL, µT , α and β are elastic constants with dimension of stress. µT can be identified as

the shear modulus in transverse shear across the preferred direction, and µL as the shear modulus in longitudinal shear

in the preferred direction. α and β are specific stress components to take into account different layers for the concrete

part of the composite material. Equations governing the propagation of small elastic disturbances in a perfectly conducting

self-reinforced elastic medium having electromagnetic force ~J× ~B (the Lorentz force, ~J being the electric current density and

~B being the magnetic induction vector) as the only body forces are

τij,j +
(

~J × ~B
)

i
= ρ

∂2ui

∂t2
(3)

Where
(

~J × ~B
)

i
is the xi-component of the force

(

~J × ~B
)

. Here interaction of mechanical and electromagnetic fields are

considered. Let ui = (u1, v1, w1) and taking x1 = x, x2 = y, x3 = z, then equation (3) becomes

∂τ11
∂x

+ ∂τ12
∂y

+ ∂τ13
∂z

+
(

~J × ~B
)

x
= ρ ∂2u1

∂t2

∂τ12
∂x

+ ∂τ22
∂y

+ ∂τ23
∂z

+
(

~J × ~B
)

y
= ρ ∂2v1

∂t2

∂τ13
∂x

+ ∂τ23
∂y

+ ∂τ33
∂z

+
(

~J × ~B
)

z
= ρ ∂2w1

∂t2

(4)

For SH wave propagating in the x- direction and causing displacement in the y- direction only, we have

u1 = w1 = 0, v1 = v1(x, z, t) and
∂

∂y
≡ 0 (5)

Using equation (5) in equation (4), we have the only non vanishing equation as

∂τ12
∂x

+
∂τ23
∂z

+
(

~J × ~B
)

y
= ρ

∂2v1
∂t2

(6)

Where

τ12 = µT
∂v1
∂x

+ (µL − µT ) a1
(

a1
∂v1
∂x

+ a3
∂v1
∂z

)

τ23 = µT
∂v1
∂z

+ (µL − µT ) a3
(

a1
∂v1
∂x

+ a3
∂v1
∂z

)

The electromagnetic fields are governed by the following well known Maxwell’s equations

~∇. ~B = 0, ~∇× ~E = −
∂ ~B

∂t
, ~∇× ~H = ~J with ~B = µe

~H and ~J = σ

(

~E +
∂ui

∂t
× ~B

)

(7)

Where ~E is the induced electric field, ~J is the current density vector and magnetic field ~H includes both primary and induced

magnetic fields. µe and σ are the induced permeability and conduction coefficient respectively. The linearized Maxwell’s

stress tensor
(

τ0ij
)Mx due to the magnetic field is

(

τ0ij
)Mx

= µe (Hihj +Hjhi −Hkhkδij)

✻✸



Propagation of Surface Wave in Fluid Saturated Porous Medium Sandwiched Between Magneto-Elastic Self-Reinforced Layer and
Heterogeneous Isotropic half-space

Let ~H = (Hx, Hy, Hz) and ~h = (h1, h2, h3). Where ~hi is the change in the magnetic field. In writing the above equations,

we have neglected the displacement current. From equation (7), we get

∇
2 ~H = µeσ

{

∂ ~H

∂t
+ ~∇×

(

∂ui

∂t
× ~H

)

}

(8)

Equation (8) can be written in component form as

∂Hx

∂t
= 1

µeσ
∇2Hx

∂Hz

∂t
= 1

µeσ
∇2Hz

∂Hy

∂t
= 1

µeσ
∇2Hy +

∂
(

Hx
∂v1
∂t

)

∂x
+

∂
(

Hz
∂v1
∂t

)

∂z

(9)

For perfectly conducting medium (i.e.σ → ∞), we have from equation (9)

∂Hx

∂t
=
∂Hz

∂t
= 0 (10)

And

∂Hy

∂t
=
∂
(

Hx
∂v1
∂t

)

∂x
+
∂
(

Hz
∂v1
∂t

)

∂z
(11)

Assuming that primary magnetic field is uniform throughout space. It is clear from Equation (10) that there is no pertur-

bation in Hx and Hz, however from Equation (11) there may be perturbation in Hy. Therefore, taking small perturbation,

say h2in Hy , we have Hx = H01, Hy = H02 + h2 and Hz = H03. Where (H01, H02, H03) are components of the initial

magnetic field ~H0. We can write ~H0 = (H0 cosφ, 0, H0 sinφ), where H0 =
∣

∣

∣

~H0

∣

∣

∣
and φ is the angle at which the wave crosses

the magnetic field. Thus we have

~H = (H0 cosφ, h2, H0 sinφ) (12)

We shall consider initial value of h2 to be zero. Using equation (12) in equation (11), we get

∂h2

∂t
=
∂
(

H0 cosφ
∂v1
∂t

)

∂x
+
∂
(

H0 sinφ
∂v1
∂t

)

∂z
(13)

Integrating with respect to ’t’, we get

h2 = H0 cosφ
∂v1
∂x

+H0 sinφ
∂v1
∂z

(14)

Considering ~∇
(

H2

2

)

= −
(

~∇× ~H
)

× ~H +
(

~H.~∇
)

~H and the equation (7), we get

~J × ~B = µe

{

−~∇

(

H2

2

)

+
(

~H.~∇
)

~H

}

(15)

Using equations (2) and (15), we obtain the only non vanishing equation of the motion for layer as

P
∂2v1
∂z2

+Q
∂2v1
∂x2

+R
∂2v1
∂x∂z

= ρ
∂2v1
∂t2

(16)

Where,

P = µT + a23 (µL − µT ) + µeH
2
0 sin2 φ

Q = µT + a21 (µL − µT ) + µeH
2
0 cos2 φ

R = 2a1a3 (µL − µT ) + µeH
2
0 sin 2φ

(17)
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Now let we consider

v1 (x, z, t) = V1 (z) e
i(kx−ωt) (18)

Where k is wave number and ω is the angular frequency. Substituting Equation (18) in Equation (16), we get

P
∂2V1

∂z2
+ ikR

∂V1

∂z
+ k2

(

ρ1c
2
−Q

)

V1 = 0 (19)

Solution of Equation (19) is

V1(z) = e−
ηz
2 (A cosTz +B sinTz) (20)

Where η = ikR
P
, T =

(

ψ − η2

4

) 1

2

, ψ = 1
P

(

ρ1ω
2 −Qk2

)

and A, B are constants. Using Equation (20) in Equation (18), we

get the solution for upper layer M1 as

v1 (x, z, t) = e−
ηz
2 (A cosTz +B sinTz) eik(x−ct) (21)

2.2. Solution for Fluid Saturated Porous Medium M2

Equation of motion for fluid saturated porous layer in the absence of body forces are taken as

σij,j =
∂2

∂t2
(ρ11ui + ρ12Ui)− bij

∂

∂t
(Uj − uj) (22)

and

σij,j =
∂2

∂t2
(ρ12ui + ρ22Ui) + bij

∂

∂t
(Uj − uj) (23)

Where σij are the components of the stress tensor and ui are the components of the displacement vector of the solid and Ui

are the components of the displacement vector of the fluid and

σ = −pf (24)

where p is the pressure in the fluid and f is the porosity of the medium. Mass coefficients ρ11, ρ12, ρ22 are related to the

densities ρ′, ρs, ρf of the layer, solid and fluid, respectively

ρ11 + ρ12 = (1− f)ρs (25)

And

ρ12 + ρ22 = fρf (26)

so the mass density of the aggregate is

ρ′ = ρ11 + 2× ρ12 + ρ22 = ρs + f(ρf − ρs) (27)

the mass coefficients must follow the following inequalities

ρ11 > 0, ρ12 < 0, ρ22 > 0, ρ11ρ22 − ρ222 > 0 (28)

✻✺
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The constitutive equations for anisotropic fluid-saturated porous medium is

σ11 = (Ap ∈ +ME) + 2Nu1,1 + (F −Ap)u3,3 (29)

σ22 = (Ap ∈ +ME) + 2Nu2,2 + (F −Ap)u3,3 (30)

σ33 = (F ∈ +QE) + (2C − F )u3,3 (31)

σ23 = G(u2,3 + u3,2) (32)

σ31 = G(u1,3 + u3,1) (33)

σ12 = G(u2,1 + u1,2) (34)

σ = (M ∈ +RE) + (Q−M)u3,3 (35)

where Ap, F, C,G,M,Q,N,R are the material constants and

∈ij=
1

2

(

∂ui

∂uj

+
∂uj

∂ui

)

(36)

With the help of Equation (29) and Equation (36), the Equation (22) and Equation (23) reduces to

N
∂2u

∂x2
+G

∂2u

∂z2
=

∂2

∂t2
(ρ11u+ ρ12U)− b11

∂

∂t
(U − u) (37)

and

∂2

∂t2
(ρ12u+ ρ22U) + b11

∂

∂t
(U − u) = 0 (38)

the solution of Equation (37) and Equation (38) may be taken as

u(x, z, t) = u(z)ei(kx−ωt) (39)

And

U(x, z, t) = U(z)ei(kx−ωt) (40)

with the help of Equation (39) and (40), the Equation (37) and Equation (38) becomes

(

∂2

∂z2
+ L2

2

)

(uU ) = 0 (41)

where

L2
2 = ξ2 −

N

G
k2 (42)

and

ξ2 = (F + iR)
ω2

β
(43)

F =

(

b211 + γ22dρ
′2ω2

b211 + (ρ′γ22ω)2

)

γ22
d

(44)

β =

√

G

d′
, d

′

= ρ11 −
ρ212
ρ22

, d = γ11 −
γ2
12

γ22
, γ =

N

G
, βa =

√

N

ρ′
, ρ

′

= ρ11 + 2ρ12 + ρ22 (45)

the solution of Equation (41) are

v2(x, z, t) = u(x, z, t) = (A1 cosL2z +A2 sinL2z)e
i(kx−ωt) (46)

And

U(x, z, t) =
(

A1 cosL2z +A2 sinL2z
)

ei(kx−ωt) (47)
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2.3. Solution for the half-space M3

The equation of motion for the isotropic medium, without body forces is taken as

τij,j = ρ
∂2vi
∂t2

i, j = 1, 2, 3 (48)

where vi are the components of the displacement and τij is the component of stress tensor and ρ is the density of medium.

τij = λδijekk + 2µeij (49)

where λ and µ are Lame’s constants, δij is kronnecker delta and

eij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

and ekk =
∂vi
∂xj

(50)

with the help of Equation (49) and (50), Equation (48) becomes

µ3

(

∂2v3
∂x2

+
∂2v3
∂z2

)

+

(

∂µ3

∂z

)(

∂v3
∂z

)

= ρ
∂2v3
∂t2

(51)

Now let we consider

v3 (x, z, t) = V3 (z) e
i(kx−ωt) (52)

using Equation (1) and (52) in Equation (51), we get

V3
′′(z) + aV3

′(z) +

(

ρ3
µ3
ω2

− k2
)

V3(z) = 0 (53)

Let we consider

V3(z) = ϕ(z)e−
az
2 (54)

Using Equation (54) in Equation (53), we get

ϕ′′(z) +N2
1ϕ(z) = 0 (55)

where N1 =
√

k2 − ω2

β2

3

+ a2

4
and β3 =

√

µ3

ρ3
solution of the Equation (55) is

ϕ(z) = De−N1z (56)

using Equation(56) and (54) in Equation (52), we get

v3(x, z, t) = De−(N1+
a
2
)zei(kx−ωt) (57)

3. Boundary Condition

The boundary conditions are:

(i). P ∂v1
∂z

+ R
2

∂v1
∂x

= 0, at z = −H

(ii). v1 = v2 and P ∂v1
∂z

+ R
2

∂v1
∂x

= (−GA1L2 sinL2z +GA2L2 cosL2z) e
i(kx−ωt), at z = −H1

✻✼
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(iii). v2 = v3 and (−GA1L2 sinL2z +GA2L2 cosL2z ) e
i(kx−ωt) = µ3

∂v3
∂z

at z = 0

With the help of boundary condition (i), we get

APT sinTH +BPT cosTH = 0 (58)

By boundary condition (ii), we have

Ae
ηH1

2 cosTH1 −Be
ηH1

2 sinTH1 −A1 cosL2H1 +A2 sinL2H1 = 0 (59)

and

APT sinTH1 +BPT cosTH1 −A1GL2 sinL2H1 −A2GL2 cosL2H1 = 0 (60)

By boundary condition (iii), we get

A1 = D (61)

and

A1 = −
GL2A2

µ0

(

N1 +
a
2

) (62)

using Equation (61) and (62) in Equations (59) and (60), we get

Ae
ηH1

2 cosTH1 −Be
ηH1

2 sinTH1 +A2

(

GL2

µ0

(

N1 +
a
2

) cosL2H1 + sinL2H1

)

= 0 (63)

And

APT sinTH1 +BPT cosTH1 +A2

(

(GL2)
2

µ0

(

N1 +
a
2

) sinL2H1 −GL2 cosL2H1

)

= 0 (64)

Now eliminating the constants from Equations (58), (63) and (64), we get

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

PT sinTH PT cosTH 0

e
ηH1

2 cosTH1 − e
ηH1

2 sinTH1

(

GL2

µ0(N1+
a
2
)
cosL2H1 + sinL2H1

)

PT sinTH1 PT cosTH1

(

(GL2)
2

µ0(N1+
a
2
)
sinL2H1 −GL2 cosL2H1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

after solving this determinant, we get

tanL2H1 =

GL2

{

PT

µ0(N1+
a
2
)
sinT (H1 −H) + e

ηH1

2 cosT (H1 −H)

}

(GL2)
2e

ηH1
2

µ0(N1+
a
2
)

cosT (H −H1) + PT sinT (H −H1)

(65)

This is the frequency equation of surface wave in fluid saturated porous medium sandwiched between magneto-elastic self-

reinforced medium and heterogeneous isotropic half-space.

68



Nidhi Dewangan and S.A.Sahu

4. Particular Cases

Case 1: When P = Q = µ1, R = 0, εH = 0, a 6= 0, then we get from Equation (65)

tanL2H1 =

GL2

{

µ1T1

µ0(N1+
a
2
)
sinT1 (H1 −H) + cosT1 (H1 −H)

}

(GL2)
2

µ0(N1+
a
2
)
cosT1 (H −H1) + µ1T1 sinT1 (H −H1)

(66)

where

T1 = k

√

c2

β2
1

− 1 , β1 =

√

µ1

ρ1
, εH =

µeH
2
0

µT

This is the frequency equation of surface wave in fluid saturated porous medium sandwiched between isotropic layer and

heterogeneous isotropic half-space.

Case 2: when P = Q = µ1, R = 0, a = 0, then from Equation (65), we get

tanL2H1 =
GL2

{

µ1T1

µ0N2
sinT1 (H1 −H) + cosT1 (H1 −H)

}

(GL2)
2

µ0N2
cosT1 (H −H1) + µ1T1 sinT1 (H −H1)

(67)

where N2 = k
√

1− c2

β2

3

and β3 =
√

µ3

ρ3
. This is the frequency equation of surface wave in fluid saturated porous medium

sandwiched between isotropic layer and homogeneous isotropic half-space.

Case 3: When P = Q = µ1, R = 0, a = 0 and H → H1, then Equation (65) reduces to

tan

(

kH1

√

c2

β2
− 1

)

=
µ0

√

1− c2

β2

3

G
√

c2

β2 − 1
(68)

where β =
√

G
d′
. The Equation (68) gives the dispersion equation of surface wave in isotropic layer lying over a homogeneous

isotropic half-space. This is the classical Love-wave equation.

5. Numerical Examples and Discussion

For computation of dimensionless phase velocity of surface wave propagation in a fluid saturated porous medium sandwiched

between a magneto-elastic self-reinforced layer and a heterogeneous isotropic half-space, we have considered the following

data (Gubbins [8]):

1. For Magneto-elastic self-reinforced medium µL = 4.4 × 109 N/m2, µT = 1.89 × 109 N/m2, ρ1 = 5600Kg/m3,

a1 = 0.00316227, φ = 10◦.

2. For heterogeneous isotropic half-space µ3 = 6.77× 1010 N/m2, ρ3 = 3323Kg/m3.

✻✾
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Figure 2. Variation in dimensionless phase velocity against dimensionless wave number for different values of magneto-elastic coupling pa-
rameter

Figure 3. Variation in dimensionless phase velocity against dimensionless wave number for different values of inhomogeneity parameter

Figure 4. Variation in dimensionless phase velocity against dimensionless wave number for different values of magneto-elastic coupling pa-
rameter for different heights of layers

6. Conclusion

Propagation of surface wave in fluid saturated porous medium sandwiched between magneto-elastic self-reinforced layer and

heterogeneous isotropic half-space has been studied. Frequency equation of surface wave has been obtained. Numerical results

and particular cases have also been discussed. In the isotropic case, when heterogeneity, magnetic field, self-reinforcement

and porosity are absent, the frequency equation reduces to classical Love wave equation. Graphs have been plotted between

phase velocity and wave number. It is observed that the heterogeneity of the medium increases the phase velocity of surface

waves significantly. Also, anisotropy (magneto-elasticity, self-reinforcement and porosity) of the medium has been found in
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favour of the phase velocity of considered wave.

References

[1] A.J.Belfield, T.G.Rogers and A.J.M.Spencer, Stress in elastic plates reinforced by fibers lying in concentric circles,

Journal of the Mechanics and Physics of Solids, 31(1)(1983), 25-54.

[2] M.A.Biot, Theory of Deformation of a Porous Viscoe-lastic Anisotropic Solid, Journal of Applied Physics, 27(5)(1956),

459-467.

[3] M.A.Biot, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid, Journal of the Acoustical Society

of America, 28(2)(1956), 168-178.

[4] A.Chattopadhyay and S.Chaudhury, Magnetoelastic shear waves in an infinite self-reinforced plate, International Journal

of Numerical and Analytical Methods in Geomechanics, 19(1995), 289-304.

[5] A.Chattopadhyay and R.K.De, Love type waves in a porous layer with irregular interface, Int. J. Engg. Sci., 21(1983),

1295-1303.

[6] A.Chattopadhyay, S.A.Sahu and A.K.Singh, Dispersion of G-type seismic wave in magnetoelastic self-reinforced layer,

Int. J. of Appl. Math and Mech., 8(2012), 2-7.

[7] I.Edelman, Surface wave in porous medium interface: low frequency range, Wave Motion, 39(2004), 111-127.

[8] D.Gubbins, Seismology and plate tectonics, Cambridge University press, Cambridge/New York, (1990).

[9] S.Gupta, A.Chattopadhyay and D.K.Majhi, Effect of initial stress on Propagation of Love waves in an anisotropic

porous layer, Journal of Solid Mechanics, 2(2010), 50-62.

[10] R.Kumar and B.S.Hundal, Wave propagation in a fluid saturated incompressible porous medium, Indian J. Pure Appl.

Math., 4(2003), 651-665.

[11] M.Sethi and K.C.Gupta, Surface Waves in Homogeneous, General Magneto-Thermo, Visco-Elastic Media of Higher Or-

der Including Time Rate of Strain and Stress, International Journal of Applied Mathematics and Mechanics, 7(17)(2011),

1-21.

[12] P.D.S.Verma, O.H.Rana and M.Verma, Magnetoelastic transverse surface waves in self-reinforced elastic bodies, Indian

Journal of Pure and Applied Mathematics, 19(7)(1988), 713-716.

[13] C.F.Richter, Elementary Seismology, Freeman, San Francisco, U.S.A., (1958).

✼✶


	Introduction
	Formulation and Solution of the Problem
	Boundary Condition
	Particular Cases
	Numerical Examples and Discussion
	Conclusion
	References

