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Abstract: The present study deals with the propagation of surface waves in the fluid saturated porous medium sandwiched between
magneto-elastic self-reinforced medium and heterogeneous isotropic half-space. Frequency equation of surface wave has
been obtained. Numerical results and particular cases have also been discussed. In the isotropic case, when heterogeneity,
magnetic field, self-reinforcement and porosity are absent, the frequency equation reduces to classical Love wave equation.
Effects of reinforcement, magneto-elastic coupling parameter and heterogeneity on phase velocity have been depicted by
means of graphs.
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1. Introduction

Effects of earthquakes on artificial structures are of prime importance to engineers and architects. During an earthquake
and similar disturbances, a structure is excited into a more or less vibrant with oscillatory stress that depends upon both
the ground motion and physical properties of the structure. Most concrete construction includes nominal steel reinforcing

as given in the book of Richter [13].

This is potentially the strongest and most earthquake resistant type of construction. So, wave propagation in a reinforced
medium plays a very important role in the civil engineering and geophysics. The characteristic property of a self-reinforced
material is that its component act together as a single anisotropic unit as long as they remain in elastic condition, i.e. the
two components are bound together so that there is no relative displacement between them. There is sufficient evidence
in the literature that the Earth crust may contain some hard/soft rocks or material that may exhibit self-reinforcement
properties. The study of mineral explorations and geophysics also proves the existence of magnetic field and inhomogeneity

characteristic of the earth.
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Propagation of Surface Wave in Fluid Saturated Porous Medium Sandwiched Between Magneto-Elastic Self-Reinforced Layer and
Heterogeneous Isotropic half-space

The study of porous medium in recent time has acquired prime interest. The layer of the earth usually of such materials
and the medium is generally dealt under the name of poro-elastic medium. Investigation on propagation of waves in lig-

uid saturated porous solids are relevant to geophysical prospecting methods, survey techniques are very useful in oil industry.

The role of pore water in seismology has been emphasized in many studies. Biot [2] has established the theory of the
propagation of elastic waves in a porous elastic solid saturated by a viscous fluid. Biot [3] has developed the mathematical
theory for the propagation of elastic waves in a fluid saturated porous medium. The problem of magneto-elastic transverse
surface waves in self-reinforced elastic solids was studied by Verma et al. [12]. Chattopadhyay and Chaudhury [4] studied
the propagation of magnetoelastic shear waves in an infinite self-reinforced plate. The magnetic and thermal effect on shear

wave propagation is highlighted by Sethi and Gupta [11].

A detailed investigation has been made by Kumar and Hundal [10] to notice the propagation pattern of surface waves in
uniform liquid layer overlying a fluid saturated porous half space. The existence and asymptotic behavior of the surface
waves at a free interface of a saturated porous medium are investigated in the low frequency range by Edelman [7]. Gupta
et al. [9] have shown the effect of initial stress on propagation of Love waves in anisotropic porous layer. Chattopadhyay
and De [5] investigated the propagation of love waves in an isotropic fluid saturated porous layer with irregular interface.

Chattopadhyay et al. [6] have discussed the dispersion of G-type seismic wave in magnetoelastic self-reinforced layer.

The idea of our present paper is taken from this. In the present paper we have discussed the propagation of surface waves in

a fluid saturated porous medium sandwiched between magneto-elastic self-reinforced layer and a heterogeneous half-space.

2. Formulation and Solution of the Problem

We have considered an anisotropic fluid saturated porous layer of thickness Hi, sandwiched between magneto-elastic self-
reinforced medium of finite width and heterogeneous isotropic half-spaces. The heterogeneity of the half-space has been

taken as

ps = poe”*
(1)
p3 = poe*”
where p3 and ps3 are rigidity and density of the half-space respectively. The x-axis is taken horizontally in the direction of

wave propagation and z-axis is taken vertically downwards as shown in the Fig.1.
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Figure 1. Geometry of the Problem
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2.1. Formulation and Solution for Upper Layer M1

We deduce the equation of motion for the propagation of surface wave in Magneto-elastic self-reinforced media and then

find its appropriate solution. The constitutive equations used in a self-reinforced linearly elastic model are [1]:
Tij = Aerklij + 2ures; + a(artmermdij + erkaia;) + 2(pr — pr)(aaner; + ajaker;) + Bakamermaias, i,j, k,m =1,2,3. (2)

Where 7;; are components of stress, e;jare components of infinitesimal strain, §;; Kronecker delta, a; components of a, all
referred to rectangular Cartesian co-ordinates z; . @ = (a1,a2,as) is the preferred direction of reinforcement such that
a? + a3 + a3 = 1. The vector @may be a function of position. Indices take the values 1, 2, 3 and summation convention
is employed. The coefficients A, pur, pr, @ and B are elastic constants with dimension of stress. pr can be identified as
the shear modulus in transverse shear across the preferred direction, and ur as the shear modulus in longitudinal shear
in the preferred direction. « and 3 are specific stress components to take into account different layers for the concrete
part of the composite material. Equations governing the propagation of small elastic disturbances in a perfectly conducting
self-reinforced elastic medium having electromagnetic forceJ x B (the Lorentz force, J being the electric current density and

B being the magnetic induction vector) as the only body forces are

Tijj + (fX E)l = Pa;? (3)

Where (f X é) is the x;-component of the force (f X é) Here interaction of mechanical and electromagnetic fields are

considered. Let u; = (u1,v1,w1) and taking 1 = z,x2 = y, x3 = 2z, then equation (3) becomes

dt11 | 9112 | 9m13 7o B) — ,0%uy
oc T oy +8z+J><Bz_p8t2
T af T 7o B) _ 9%
80102 + 22 + 23 + (J X B) =p E)t?l (4)
0713 0723 0733 T _ 82w1
s T oy T o T (‘] x ) =P 5z

For SH wave propagating in the x- direction and causing displacement in the y- direction only, we have

9 _y (5)

up =wi =0, v1 =vi(z,2,t) and o

Using equation (5) in equation (4), we have the only non vanishing equation as

87’12 87’23 = = 821}1
J B) - 6
ox 0z +( % " P ot? (©6)
Where
T2 = pr 9 + (ur — pr) a1 (a1 %2 + az92)
To3 = [T al + (L — pr) as (a1 Tt a3 6”1)

The electromagnetic fields are governed by the following well known Maxwell’s equations

.o B - - - L " o P
VXE:—a ,VXHszitthueHandJ:a(E+au XB) (7

—;

v.-B ot f)

Where E is the induced electric field, J is the current density vector and magnetic field H includes both primary and induced
magnetic fields. p. and o are the induced permeability and conduction coefficient respectively. The linearized Maxwell’s
0

stress tensor (Tij)M” due to the magnetic field is

(Tioj)M“” = e (Hihj + Hjh; — Hihidiz)
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Let H = (He, Hy, H.) and h = (h1, h2, hs). Where h; is the change in the magnetic field. In writing the above equations,

we have neglected the displacement current. From equation (7), we get

i o[ (Ou
VH—uea{at—I—Vx(atxH)}

Equation (8) can be written in component form as

8Hy, _ 1 w2
ot ,u,eov H,

OH, — _1 ‘7211;

ot HeO

vy dvq
OHy _ 1 V2H +6(HI at ) _'_B(Hz at)
Ot T peo Y ox Oz

For perfectly conducting medium (i.e.c — o0), we have from equation (9)

OH,  OH.
)

=0

And

oH, _ 0 (H:%}) N 0 (H. %)

ot ox 0z

(11)

Assuming that primary magnetic field is uniform throughout space. It is clear from Equation (10) that there is no pertur-

bation in H, and H., however from Equation (11) there may be perturbation in H,. Therefore, taking small perturbation,

say hoin Hy, , we have Hy, = Ho1, Hy = Ho2 + he and H, = Hoz. Where (Ho1, Ho2, Hos) are components of the initial

magnetic field ﬁo. We can write ﬁo = (Hop cos ¢, 0, Hy sin ¢), where Hy = ‘ﬁo‘ and ¢ is the angle at which the wave crosses

the magnetic field. Thus we have

—

H = (Ho cos ¢, ha, Ho sin ¢)

We shall consider initial value of ha to be zero. Using equation (12) in equation (11), we get

Ohy 1o} (Ho cos d)% n 1o} (Ho sin (;363%)

ot ox 0z

Integrating with respect to ’t’, we get

ho = Hp cos qﬁ% + Hyp sinqﬁ%

Considering v (HTz) =— (6 X ﬁ) x H + (ﬁﬁ) H and the equation (7), we get

fxgzue{_e (%) + (A.9) H}

(12)

(13)

(14)

Using equations (2) and (15), we obtain the only non vanishing equation of the motion for layer as

821)1 621)1 (921)1 o 821)1
Pz 9% TR0, = o

Where,
P = pr + a3 (ur — pr) + pe Hg sin® ¢
Q = pr +ai (pr — pr) + peH§ cos® ¢
R =2a1a3 (ur. — pr) + pe H3 sin 2¢
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Now let we consider

v1 (z,2,t) = Vi (2) e Fomeb) (18)
Where k is wave number and w is the angular frequency. Substituting Equation (18) in Equation (16), we get

v . OVi o, 2
552 +sz§+k (plc —Q)V1:0 (19)

P

Solution of Equation (19) is

Vi(2) —e T (AcosTz+ BsinTz) (20)

1
Where n = %8 T = (1/) - %) o= + (p1w® — Qk?) and A, B are constants. Using Equation (20) in Equation (18), we

get the solution for upper layer M1 as

vi (z,2,t) = e T (AcosTz + BsinTz) e*==!) (21)

2.2. Solution for Fluid Saturated Porous Medium M2

Equation of motion for fluid saturated porous layer in the absence of body forces are taken as

2

19} 0
0ij. = g (P11t + p12Ui) = bij o (Us — ) (22)

and
2

0
— (p12us + p22Us) +

0
i = B (Uj — uy) (23)

Where o;; are the components of the stress tensor and u; are the components of the displacement vector of the solid and U;

are the components of the displacement vector of the fluid and

o=-pf (24)

where p is the pressure in the fluid and f is the porosity of the medium. Mass coefficients pi1, p12, p22 are related to the

densities p', ps, py of the layer, solid and fluid, respectively

pi1+pi2=(1— f)ps (25)
And
piz + p22 = fps (26)
so the mass density of the aggregate is
0 = p11 +2 X pi2+ p22 = ps + flps — ps) (27)

the mass coefficients must follow the following inequalities

p11 > 0,p12 < 0, p22 > 0, pr1p22 — p§2 >0 (28)
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The constitutive equations for anisotropic fluid-saturated porous medium is
o111 = (Ap S +ME) + 2NU1,1 + (F — Ap)’u,g,g

022 = (Ap € +ME) +2Nua 2 + (F — Ap)us s
o33 = (F € +QFE) 4+ (2C — F)us,s
023 = G(u2,3 + u32)
031 = G(u1,3 + us,1)
o12 = G(u2,1 + u1,2)
oc=(M € +RE)+ (Q — M)us,s
where A, F,C,G, M,Q, N, R are the material constants and
e 1 <8ui n Bu])
2 \0u;  Ou

With the help of Equation (29) and Equation (36), the Equation (22) and Equation (23) reduces to

82 9%u 92 1o}
8m2 +G(922 92 (p11u+p12U)—b11at( —u)
and
2 9]
92 (pr2u + p22U) + b1y E( —u)=0

the solution of Equation (37) and Equation (38) may be taken as
u(z, z,t) = u(z)e'*e=

And

Uz, z,t) = U(z)e' ko=t

with the help of Equation (39) and (40), the Equation (37) and Equation (38) becomes

(§2Q+L2)( )=0

where
_ .2 N
= € a k

and
W2

B
) Y22

w
w)?
(G N N
5:\/57d=ml—& d=r _m”y G’ ﬁ:\177p2p11+2p12+p22
P22 Y22 p

the solution of Equation (41) are

& =(F+ ZR)

(bll +'722dp
b11 + P V22w

va(z, 2,t) = u(w, z,t) = (A1 cos Loz + Ay sin Lyz)e' ko=t

And

U(z,2,t) = (A1 cos Loz + Ay sin Laz) ' F* 7

66

(36)

(39)

(40)

(41)
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2.3. Solution for the half-space M3

The equation of motion for the isotropic medium, without body forces is taken as

6211-; ..
Tijd = P oz i,7=1,2,3

(48)

where v; are the components of the displacement and 7;; is the component of stress tensor and p is the density of medium.

Tij = Mijexk + 2peq;

where A and p are Lame’s constants, d;; is kronnecker delta and

___1 81)2- +8U]' and _ (91)2'
i = 2 axj 6.’[1 ok = axj

with the help of Equation (49) and (50), Equation (48) becomes

621}3 (921)3 6;13 81}3 o 82’(}3
Hs < 922 T 822 > + (7) (7) =P o

Now let we consider

vz (z,2,t) = V3 (2) gikz—wt)

using Equation (1) and (52) in Equation (51), we get
V5" (2) + aV5'(2) + (ﬁoﬁ - k2> Va(z) =0

w3

Let we consider

Using Equation (54) in Equation (53), we get

¢"(2) + Nig(z) =0

where N1 = , /k? — g—g + % and (33 = \/% solution of the Equation (55) is
©(z) = De”M1*
using Equation(56) and (54) in Equation (52), we get
v3(z, z,t) = De~(N1+8)z gitka—wt)

3. Boundary Condition

The boundary conditions are:

(ii). v1 = v2 and P% + %%1 = (—GAi1Lssin Loz + GA2Ls cos Laz) etko=wt) gt 2 = —H,

(49)

(51)

(52)

(53)
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(iii). v2 = v3 and (—GA1Lasin Loz + GAz Ly cos Loz ) eilke—wt) ug% at 2 =0

With the help of boundary condition (i), we get
APTsinTH 4+ BPT cosTH =0

By boundary condition (ii), we have

nHy

nH
Ae 2 cosTH; — Be% sinTH, — Ay cos LoHq, + Assin LoH1 =0

and

APTSinTHl =+ BPTCOSTH1 — AlGLz SianHl — AQGLQ COSL2H1 =0

By boundary condition (iii), we get

A1 =D
and
A= GLgAga
po (N1 + %)

using Equation (61) and (62) in Equations (59) and (60), we get

GL-

nHy nHy
Ae 2 cosTH; — Be 2 sinTH; + As —
po (N1 +5)

cos Lo Hy + sin L2H1> =0

And
(GL2)?

APTsinTH, + BPT cosTH; + A —
po (N1 + 2)

sin L2H1 — GL2 COS L2H1> =0

Now eliminating the constants from Equations (58), (63) and (64), we get

PTsinTH PT cosTH 0
nHy nHy | GL .
e 2 cosTHy —e 2 sinTH: ——=2—~cos LoHy +sin Lo H,
NO(N1+5)
PTsinTH, PT cosTH, (CLa) _in LyHy — GLacos LQHI)
#0(N1+%)

after solving this determinant, we get

PT . nHy
GLQ 7aSIHT(H1—H)+e 2 COST(Hl—H)
#0(N1+5)
tan Lo Hy = —
(GL)?e2 _ . 3
wo(N1+3) cosT (H — H1) + PTsinT (H — Hy)

(58)

(61)

(62)

(63)

(64)

(65)

This is the frequency equation of surface wave in fluid saturated porous medium sandwiched between magneto-elastic self-

reinforced medium and heterogeneous isotropic half-space.
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4. Particular Cases
Case 1: When P=Q = u1, R=0,eg =0, a # 0, then we get from Equation (65)

_mTy g _ _
GLQ{[,LQ(N1+%) smT1 (H1 H)+COST1 (H1 H)}
tan Lo Hy = (66)

(GLy)? _ : -
mcosﬂ (H—Hy)+mTisinTy (H — H)

2 eH2
T =k %_17 B = /ﬂy 5H:u
Bt pP1 Hur

This is the frequency equation of surface wave in fluid saturated porous medium sandwiched between isotropic layer and

where

heterogeneous isotropic half-space.

Case 2: when P =Q = pu1, R =0, a = 0, then from Equation (65), we get

GL, { m Ty sin Ty (Hy — H) + cosTh (Hy — H)}

HoN2

tan L2H1 = (GL )2 (67)
ﬁ COST1 (H — H1) =+ /,LlTl sinT1 (H — Hl)
where No = k,/1 — ;—Z and B3 = %. This is the frequency equation of surface wave in fluid saturated porous medium
3

sandwiched between isotropic layer and homogeneous isotropic half-space.

Case 3: When P=Q = u1, R=0,a =0 and H — Hi, then Equation (65) reduces to

c? MO\/ _Z’i;
tan | kH [ S5 —1) = (68)
Gw;—z—l

where 8 = %. The Equation (68) gives the dispersion equation of surface wave in isotropic layer lying over a homogeneous

isotropic half-space. This is the classical Love-wave equation.

5. Numerical Examples and Discussion

For computation of dimensionless phase velocity of surface wave propagation in a fluid saturated porous medium sandwiched
between a magneto-elastic self-reinforced layer and a heterogeneous isotropic half-space, we have considered the following

data (Gubbins [8]):

1. For Magneto-elastic self-reinforced medium pz = 4.4 x 10° N/m?, pr = 1.89 x 10° N/m?, p; = 5600 Kg/m?,
a1 = 0.00316227, ¢ = 10°.

2. For heterogeneous isotropic half-space pz = 6.77 x 10%° N/mz, p3 = 3323Kg/m3.

69
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Figurc 2. Variation in dimensionless phase velocity against dimensionless wave number for different values of magneto-elastic coupling pa-
rameter
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Figure 4. Variation in dimensionless phase velocity against dimensionless wave number for different values of magneto-elastic coupling pa-
rameter for different heights of layers

6. Conclusion

Propagation of surface wave in fluid saturated porous medium sandwiched between magneto-elastic self-reinforced layer and
heterogeneous isotropic half-space has been studied. Frequency equation of surface wave has been obtained. Numerical results
and particular cases have also been discussed. In the isotropic case, when heterogeneity, magnetic field, self-reinforcement
and porosity are absent, the frequency equation reduces to classical Love wave equation. Graphs have been plotted between
phase velocity and wave number. It is observed that the heterogeneity of the medium increases the phase velocity of surface

waves significantly. Also, anisotropy (magneto-elasticity, self-reinforcement and porosity) of the medium has been found in



Nidhi Dewangan and S.A.Sahu

favour of the phase velocity of considered wave.
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