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1. Introduction

Let E be a real Banach space with dual E∗. The normalized duality mapping from E to 2E
∗

is defined by

J(x) := {x∗ ∈ E
∗ : 〈x, x∗〉 = ‖x‖2 , ‖x‖ = ‖x∗‖},

where 〈., .〉 denotes the duality pairing between the elements of E and E∗.

Definition 1.1 ([3]). A mapping A : D(A) ⊆ E → E is said to be accretive if for all x, y ∈ E, there exists j(x−y) ∈ J(x−y)

such that 〈Ax − Ay, j(x − y)〉 ≥ 0. If E is a Hilbert space, accretive operators are also called monotone. An operator A is

called m-accretive if it is accretive and R(I + rA), the range of (I + rA), is E for all r > 0; and A is said to satisfy the

range condition if D(A) ⊆ R(I + rA), ∀ r > 0, where R(I + rA) = {z + rAz : z ∈ E,Az 6= φ}.

Closely related to the class of accretive mappings is the class of pseudocontractive mappings.

Definition 1.2 ([4]). The mapping T : E → E is called pseudocontractive if for all x, y ∈ E, there exists j(x−y) ∈ J(x−y)

such that 〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2.
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The mapping T is pseudocontractive if and only if (I − T ) is accretive. It is well known that if A is accretive

[6], then Jr := (I + rA)−1 is a nonexpansive single-valued mapping from R(I + rA) to D(A) and F(Jr) = N (A),

for each r > 0, where N (A) := {x ∈ D(A) : Ax = 0} = A−1(0) and F(Jr) := {x ∈ D(A) : Jrx = x}. Here we also

note that x∗ is a zero of the accretive mapping A if and only if it is a fixed point of the pseudocontractive mapping T := I−A.

Also if A is accretive then the solutions of the equation Ax = 0 correspond to the equilibrium points of some evolution

systems [18]. Consequently, considerable research efforts, especially within the past 15 years or so, have been devoted to

iterative methods for approximating the zeros of A, when A is accretive. Let K be a closed convex subset of a real Banach

space E. A mapping T : K → E is called a contraction mapping if there exists L ∈ [0, 1) such that ‖Tx− Ty‖ ≤ L‖x− y‖,

for all x, y ∈ K. If L = 1, then T is called nonexpansive.

Clearly the class of nonexpansive mappings is a subset of the class of pseudocontractive mappings. In 1976, Rockafellar [14]

introduced a proximal point algorithm in a Hilbert space for a maximal monotone operator: For any x0 ∈ H, the sequence

{xn} defined by

xn+1 = Jrnxn, ∀n ∈ N (1)

where {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0, converges weakly to an element of A−10 = {x ∈ C : 0 ∈ Ax}. The weak

and strong convergence of the sequence {xn} have been extensively discussed for in Hilbert spaces and in Banach spaces

(see e.g. [15] and the references therein). Whereas in 2000, Kamimura and Takahashi [8] modified the above results and

proved a strong convergence theorem for a monotone operator in a Hilbert space as: For A a maximal monotone operator

and Jr = (I + rA)−1 for all r > 0, let the sequence {xn} be defined by

xn+1 = αnx+ (1− αn)Jrnxn, n ≥ 0, (2)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞] satisfy the conditions (C1) lim
n→∞

αn = 0 and (C2)
∞
∑

n=0

αn = +∞ and (C3)

lim
n→∞

rn = +∞. Then the iterative sequence {xn} converges strongly to some A−10. This result was extended in 2005 by

Kim and Xu [9] to a uniformly smooth Banach space E giving the result: Suppose that A is an m-accretive operator, and

Jr := (I + rA)−1 for all r > 0, and the sequence {xn} is defined by (2), where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞] satisfy

the following conditions: (C1), (C2) and (C3)
∞
∑

n=1

|αn+1 − αn| < +∞; (C4)
∞
∑

n=1

∣

∣

∣
1−

rn+1

rn

∣

∣

∣
< +∞. Then {xn} converges

strongly to a zero of A. This work was further extended by Xu [9] in the framework of Reflexive Banach space having

weakly continuous duality map.

All these results hold when the operator is defined on the whole of E. But generally, the domain of A,D(A), is a proper

subset of E. In such a situation, these iteration processes may not even be well defined. In the case that E = H, a Hilbert

space, this problem has been overcome by introducing the proximity map, PK : H → K, where K is a closed convex subset

of H and PK is the map which sends each x ∈ H to its nearest point in K. It is well known that in H, the map PK

is nonexpansive and this fact is central in using the proximity map. Unfortunately, the fact that PK is nonexpansive in

Hilbert spaces also characterizes Hilbert spaces so that this fact is not available in general Banach spaces.

Thus in this paper, we show the convergence of an iterative algorithm in uniformly convex and uniformly smooth Banach

space when the domain of m-accretive operator, D(A) is a proper subset of the space E using retraction principle. The
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algorithm is defined as: For any x0 ∈ D(A), let the sequence {xn} be generated by















































yn = αnx0 + (1− αn)Jrnxn

Cn = {z ∈ E : ‖yn − z‖2 ≤ αn‖xn − z‖2 + 2αn〈x0 − z, j(yn − z)〉}

Hn = {z ∈ D(A) : 〈xn − x0, j(xn − z)〉 ≤ 0}

xn+1 = QCn

⋂
Hn

x0

(3)

Thus the purpose of this paper is to prove that the sequence {xn} defined by the composite iteration scheme (3) converges

strongly to a zero of m-accretive operator in a uniformly convex and uniformly smooth Banach space, thus generalizing and

extending of the results of Kamimura and Takahashi [8], Kim and Xu [9], Qin and Su [12] and the references therein to a

better iterative scheme and that of Marino and Xu [10], Takahashi [16] and the references therein, to a more general Banach

space.

2. Preliminaries

Definition 2.1. A Banach space E is called smooth [6] if, for every x ∈ E with ‖x‖ = 1; there exists unique j ∈ E∗

such that ‖j‖ = j(x) = 1. The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by ρE(τ) =

sup{ 1
2
(‖x+y‖+‖x−y‖)−1 : x, y ∈ E, ‖x‖ = 1, ‖y‖τ}. The Banach space E is called uniformly smooth [17] if lim

τ→0

ρE(τ)
τ

= 0.

Definition 2.2. The Banach space E is called uniformly convex if given any ǫ > 0, there exists δ > 0 such that for all

x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ǫ we have ‖ 1
2
(x+ y)‖ ≤ 1− δ.

It is known that every uniformly convex Banach space is reflexive. Let K ⊂ E be closed and convex and Q be a mapping

of E onto K. Then Q is said to be sunny if

Q(Q(x) + t(x−Q(x))) = Q(x), whenever Q(x) + t(x−Q(x)) ∈ E for x ∈ E and t ≥ 0.

A mapping Q of E into E is said to be a retraction if Q2 = Q. If a mapping Q is a retraction, then Q(z) = z for every

z ∈ R(Q),where R(Q) is the range of Q. A subset K of E is said to be a sunny nonexpansive retract of E if there exists a

sunny nonexpansive retraction of E onto K and it is said to be a nonexpansive retract of E if there exists a nonexpansive

retraction of E onto K. If E = H, the metric projection PK is a sunny nonexpansive retraction from H to any closed and

convex subset of H. But this is not true in a general Banach spaces. We note from the given lemma (see e.g. [5, 7]) that

Lemma 2.3. If E is smooth Banach space, C be a convex subset of E, C0 ⊂ C and Q is retraction of C onto C0, then Q

is sunny and nonexpansive if and only if for each x ∈ C and z ∈ C0 we have 〈Qx− x, J(Qx− z)〉 ≤ 0.

The given theorem known as Reich’s Theorem explains the construction of nonexpansive retraction as:

Theorem 2.4 ([13]). Let E be a Banach space which is both uniformly convex and uniformly smooth. Let T : D(T ) ⊂ E → E

be m-accretive. Then for each x ∈ E the strong lim
r→0

Jr(x) exists, where Jr = (I + rT )−1. Denote the strong lim
r→0

Jr(x) by

Qx; then Q : E → D(T ) is a nonexpansive retraction of E onto D(T ); where D(T ) denotes the closure of D(T ).

It is well known that under the hypothesis of the above Theorem, D(T ) is convex.

Lemma 2.5 ([11]). Let E be a real normed linear space. Then the following inequality holds: For each x, y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀ j(x+ y) ∈ J(x+ y).

Lemma 2.6 ([1] Resolvent Identity). For λ > 0 and µ > 0 and x ∈ E, Jλx = Jµ

(

µ

λ
x+ (1− µ

λ
)Jλx

)

.
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3. Main Result

Theorem 3.1. Let E be both uniformly smooth and uniformly convex Banach space and A : D(A) ⊂ E → E be an m-

accretive operator with closed domain and A−1(0) 6= φ. Suppose {αn} be a sequence in [0, 1] and {rn} in (0,∞) such that

lim
n→∞

αn = 0 and inf rn > 0. Let x0 ∈ D(A) be chosen arbitrarily and {xn} be generated by the algorithm


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









































yn = αnx0 + (1− αn)Jrnxn

Cn = {z ∈ E : ‖yn − z‖2 ≤ ‖xn − z‖2 + 2αn〈x0 − z, j(yn − z)〉}

Hn = {z ∈ D(A) : 〈xn − x0, j(xn − z)〉 ≤ 0}

xn+1 = QCn

⋂
Hn

x0

(4)

where S = A−1(0) = F (Jrn) and Q is the retraction of E onto D(A). Then {xn} converges strongly to QSx0.

Proof. (A) {xn} is well defined : We note here that S = A−1(0) is nonempty, closed and convex. ObviouslyHn, ∀ n ∈ N

is closed convex, so we first show that Cn is closed and convex for all n ∈ N. Infact, the inequality in Cn is equivalent to

‖xn − yn‖
2 + 2αn〈x0 − z, j(yn − z)〉 ≥ 0.

Thus Cn is closed, convex for all n ∈ N. Next we show that S = A−10 = F (Jrn) is a subset of Cn. For this, let p ∈ S, so

that

‖yn − p‖2 = ‖αn(x0 − p) + (1− αn)(Jrnxn − p)‖2

≤ (1− αn)
2‖Jrnxn − p‖2 + 2αn〈x0 − p, j(yn − p)〉

≤ ‖xn − p‖2 + 2αn〈x0 − p, j(yn − p)〉,

this implies that p ∈ Cn and hence S ⊂ Cn, ∀ n ≥ 0. We now show that S ⊂ Hn, ∀ n ≥ 0. For n=0, S ⊂ D(A) = H0. Let

S ⊂ Hn. Since xn+1 is the retraction of x0 onto Cn

⋂

Hn, so

〈x0 − xn+1, j(xn+1 − z)〉 ≥ 0, ∀ z ∈ Cn

⋂

Hn.

As S ⊂ Cn

⋂

Hn by the induction assumption, the last inequality holds, in particular, ∀ z ∈ S. This together with the

definition of Hn+1 implies that S ⊂ Hn+1. Hence S ⊂ Hn, ∀ n ≥ 0. Thus {xn}is well defined.

(B) {xn} is bounded: Since xn = QHn
x0 (by definition of Hn), so 〈x0 −xn, j(xn − v)〉 ≥ 0, ∀ v ∈ Hn, and since S ⊂ Hn,

so we have 〈x0 − xn, j(xn − p)〉 ≥ 0, ∀p ∈ S, or

0 ≤ 〈x0 − xn, j(xn − p)〉 = 〈x0 − p− xn + p, j(xn − p)〉

≤ ‖x0 − p‖‖xn − p‖ − ‖xn − p‖2

i.e. ‖xn − p‖ ≤ ‖x0 − p‖, ∀ p ∈ S. In particular, {xn} is bounded and ‖xn − q‖ ≤ ‖q − x0‖, ∀ q ∈ QS(x0).

(C) ‖xn+1 − xn‖ → 0: From xn = QCn
x0 and xn+1 = QCn

⋂
Hn

(x0) ⊂ Hn asserts that 〈xn − x0, j(xn − xn+1)〉 ≤ 0.

‖xn+1 − xn‖
2 = ‖(xn+1 − x0) + (x0 − xn)‖

2

≤ ‖xn+1 − x0‖
2 + 2〈x0 − xn, j(xn+1 − xn)〉

= ‖xn+1 − x0‖
2 + 2〈xn − x0, j(xn − xn+1)〉

≤ ‖xn+1 − x0‖
2
,
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which implies that

‖xn+1 − xn‖ → 0 as n → ∞. (5)

Thus {xn} is a Cauchy sequence in S and since E is Banach space and S is closed, convex, so there exists p ∈ S such that

lim
n→∞

xn = p.

(D) ‖xn − Jrxn‖ → 0: On the other hand, xn+1 ∈ Cn implies that

‖yn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + 2αn〈x0 − xn+1, j(yn − xn+1)〉.

Since αn → 0 as n → ∞, thus using (5) with {xn} bounded, we get that

‖yn − xn+1‖ → 0. (6)

Moreover,

‖yn − Jrnxn‖ = αn‖x0 − Jrnxn‖ → 0. (7)

So combining (5)- (7) yields

‖xn − Jrnxn‖ = ‖xn − xn+1 − yn + xn+1 − Jrnxn + yn‖

≤ ‖xn − xn+1‖+ ‖yn − Jrnxn‖+ ‖xn+1 − yn‖

→ 0. (8)

Putting r = inf
n≥0

rn > 0 and using Lemma 2.6, we get

‖Jrnxn − Jrxn‖ = ‖Jr

(

r

rn
xn + (1−

r

rn
)Jrnxn

)

− Jrxn‖

≤ (1−
r

rn
)‖xn − Jrnxn‖

≤ ‖xn − Jrnxn‖.

Therefore, we have

‖xn − Jrxn‖ ≤ ‖xn − Jrnxn‖+ ‖Jrnxn − Jrxn‖

≤ ‖Jrnxn − xn‖+ ‖Jrnxn − xn‖

≤ 2‖Jrnxn − xn‖,

which implies by (8) that, ‖xn − Jrxn‖ → 0. This together with limn→∞ xn = p implies that Jrp = p, i.e., p is a fixed point

of Jr or p ∈ S. Now we claim that p = QS(x0). Since xn ∈ QCn

⋂
Hn

(x0), so 〈x0 − xn, j(xn − w)〉 ≥ 0, ∀ w ∈ S ⊂ Cn.

Taking limit n → ∞, 〈x0 − p, j(p− w)〉 ≥ 0, ∀ w ∈ S ⊂ Cn or 〈x0 − p, j(w − p)〉 ≤ 0, which implies that p = QS(x0).
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