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Abstract: In this paper we have studied existence of common fixed points under compatible maps. Meir and Keeler established a
fixed point theorem for self-mapping f of a metric space. Maiti and Pal generalized this mapping. We will prove our
result by using Jungck lemma. We will genralise and improve several results of Meir and Keeler type under commuting
and weakly commuting pair of mappings and uniqueness of Common Fixed Point.
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1. Introduction

Meir & Keeler established a fixed point theorem for a self-mapping f of a metric space (X, d) satisfying the following

condition: For every ε > 0, there exists a δ > 0 such that

ε < d(x, y) < ε+ δ ⇒ d(fx, fy) < ε (1)

Maiti & Pal generalized (1). A self mapping of a metric space (X, d) satisfying the following Condition. For every ε > 0,

there exists a δ > 0 such that

ε < max{d(x, y), d(x, fx), d(y, fy)} < ε+ δ ⇒ d((fx), (fy)) < ε (2)

In [4] Park - Rhoades & Rao-Rao generalized Self mapping f & g of metric space (X , d) satisfying the following conditions.

For every ε > 0, there exists a δ > 0 such that

ε ≤ max

{

d(fx, fy), d(fx, gx), d(fy, gy),
1

2
[d(fx, gy) + d(fy, gx)]

}

< ε+ δ ⇒ d(gx, gy) < ε (3)

Now we prove a common fixed point theorem of Meir-Keeler type mapping.

∗ Proceedings : UGC Sponsored National Seminar on Value and Importance of Mathematical Physics held on
05.12.2015, organized by Department of Mathematics and Physics, Government Rajeev Lochan College, Rajim, Gariaband
(Chhattisgarh), India.

✶

http://ijcrst.in/


Existence of Common Fixed Points under Compatible Maps

2. Definition and Lemmas

Before presenting main theorem, we give some definitions & lemmas.

Definition 2.1. let S & T be self mappings of a metric space (X, d). S & T are said to be compatible if

lim
n→∞

d(ST (xn), TS(xn)) = 0. Whenever {xn} is a sequence in x, such that lim
n→∞

S(xn) = lim
n→∞

T (xn) = t for some t

in x.

Definition 2.2. Let (X, d) be a metric space E, F, S & T are self mappings of X , then a pair {E,F} is called a generalized

(ε, δ)-{S, T}- contraction relative to S & T if

E(x) ⊂ T (x) and F (x) ⊂ S(x) (4)

For every ε > 0, there exists a δ > 0 such that

ε < max

{

d(Sx, Ty), d(Sx,Ex), d(Ty, Fy),
1

2
[d(Sx, Fy) + d(Ty,Ex)]

}

< ε+ δ ⇒ d(Ex, Fy) < ε (5)

Definition 2.3. Let E, F, S & T be mappings of a metric space (x, d) into itself such that E(x) ⊂ T (x) and F (x) ⊂ S(x).

For x0 ∈ X any sequence {yn} defined by

y2n−1 = Tx2n−1 = Ex2n−2 (6)

y2n = Sx2n = Fx2n−1. (7)

For n ∈ N , is called an {S, T} iterate of x0.

The following Lemma of Jungck is used to prove our main results:

Lemma 2.4. Let S, T : (x, d) → (x, d) be mappings. Let S and T be compatible and S(xn), T (xn) → t for some t ∈ X.

Then we have lim
n→∞

TS(xn) = S(t), if S is continuous.

Lemma 2.5. Let (x, d) be a metric space and pair {E,F} be a generalized (ε, δ)-{S, T}- contraction. If x0 ∈ X and {yn} is

an S, T-iteration of x0 under E & F, then for each ε > 0 there exists δ > 0 such that ε ≤ d(yp, yq) < ε+δ ⇒ d(yp+1, yq+1) < ε

Where p & q are opposite parts.

Proof. Since E & F is a generalized (ε− δ)− {S, T}-contraction

ε ≤ max

{

d(Sx, Ty), d(Sx,Ex), d(Ty, Fy),
1

2
[d(Sx, Fy) + d(Ty,Ex)]

}

< ε+ δ ⇒ d(Ex, Fy) < ε. (8)

Suppose ε < d(Y p, Y q) < ε+ δ. Putting p = 2n & q = 2m− 1 in (8)

d(yp+1, yq+1) = d(y2n+1, y2m)

= d(Ex2n, Fx2m−1) and

d(yp, yq) = d(Y2n, Y2m.1)

= d(Sx2n, Tx2m−1)

< max

{

d(Sx2n, Tx2m−1), d(Sx2n, Ex), d(Tx2m−1, Fx2m−1),
1

2
[d(SX2n, Fx2m−1) + d(Tx2m−1, EX2n)]

}

+ d(Tx2m−1, Ex2n)

Hence from (8) ε ≤ d(Y p, Y q) < ε+ δ ⇒ d(Yp+1, Yq+1) < ε This completes the proof .
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Lemma 2.6. let E, F, S & T are self mapping of a metric space (x, d) satisfying the hypothesis of the Lemma 2.4, then

lim
n→∞

d(yn, yn+1) = 0.

Proof. Let x0 be any point in X. By (8), we have

d(y2n, y2n+1) = d(Ex2n, Ex2n−1)

< max

{

d(Sx2n, Tx2n−1), d(Sx2n, Ex2n), d(Tx2n−1, Fx2n−1),
1

2
[d(Sx2n, Fx2n−1) + d(Tx2n−1, Ex2n)]

}

= max

{

d(y2n, y2n−1), d(y2n, y2n+1), d(y2n−1, y2n),
1

2
[0 + d(y2n−1, y2n+1)]

}

= d(y2n−1, y2n)

Or Equivalently d(y2n, y2n+1) < d(y2n−1, y2n). Similarly, we have d(y2n+1, y2n+2) < d(y2n, y2n+1). Thus the sequence

{d(yn, yn+1)} is a monotone decreasing sequence & it converges to its greatest lower bound of its range t ≥ 0. In fact t = 0

otherwise there exists δ > 0 and for some n ≥ N . Lemma J ⇒ t ≤ d(ym, ym+1) < t+ δ. Put m = 2n and note that

max

{

d(Sx2n, Tx2n+1), d(Sx2n, Ex2n), d(Tx2n+1, Fx2n+1),
1

2
[d(Sx2n, Fx2n+1) + d(Tx2n, Ex2n)]

}

= max{d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2),
1

2
[d(y2n, y2n+2) + 0]}

= d(y2n, y2n+1).

Since 1

2
d(y2n, y2n+2) < 1

2
[d(y2n, y2n+1) + d(y2n+1, y2n+2)] < d(y2n, y2n+1). By using Lemma 2.5, t ≤ d(ym, ym+1) < t +

δ ⇒ d(ym+1, ym+2) < t. But d(ym+1, ym+2) = d(Tx2n+1, Sx2n+2) < t. Which is a contradiction. Therefore we have

lim
n→∞

d(yn, yn+1) = 0.

Lemma 2.7. Let the mapping E, F, S & T are as in Lemma 2.6, then the indicated sequence {Yn} is a Cauchy sequence.

Theorem 3 extends, generalizes & improves several results of Meir & Keeler type under commuting & weakly commuting pair

of mappings.

Theorem 2.8. Let E, F, S, and T be mappings of a complete metric space (X, d) into itself satisfying Definition 2.2, 2.3,

(8) E, S and F, T are compatible pairs, one of E, F, S and T is continuous. Then E, F, S and T have a unique Common

fixed point in X.

Proof. Since (X, d) is a complete metric space & using Lemma 2.7, the sequence {yn} is a Cauchy sequence and hence it

is a convergent sequence, call the limit z in X. Since {Ex2n}, {Fx2n−1}, {Sx2n} and {Tx2n−1} are subsequence of {yn} so

there are also converge to z in X. Now, suppose S is continuous and {E,S} is a compatible Pair so by Lemma 2.5 we have

SEx2n, SSx2n, ESx2n ⇒ Sz. Now, we claim that Sz = z. If Sz 6= z, then we have

lim
n→∞

max

{

d(SSx2n, Tx2n+1), d(SSx2n, ESx2n), d(Tx2n+1, Fx2n+1),
1

2
[d(SSx2n, Fx2n+1) + d(Tx2n+1, ESx2n]

}

= d(Sz, z)

Choose ε = 1

2
d(Sz, z), then there exists a positive integer N, such that n ≥ N ,

max

{

d(SSx2n, Tx2n+1), d(SSx2n, ESx2n)d(Tx2n+1, Fx2n+1),
1

2
[d(SSx2n, Fx2n+1) + d(Tx2n+1, ESx2n)]

}

− {d(Sz, z)} < ε

That is

ε = d(Sz, z)− ε

< max

{

d(SSx2n, Tx2n+1), d(SSx2n, ESx2n), d(Tx2n+1, Fx2n+1),
1

2
[d(SSx2n, Fx2n+1) + d(Tx2n+1, ESx2n)]

}

< d(SZ , z) + ε.

✸
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Since lim
n→∞

d(ESx2n, Fx2n+1) = d(Sz, z), there exists N2 > N1 such that for all n > N2, |d(ESx2n, Fx2n+1)− d(Sz, z)| <
ε

2
.

That is −ε

2
+ d(Sz, z) < d(ESx2n, Fx2n+1) < ε implies d(Sz, z) < ε, a contradiction. Hence, Sz = z. Now, again we claim

that Ez 6= z. For if Ez 6= z, then we have

lim
n→∞

max

{

d(Sz, Tx2n+1), d(Sz,Ez), d(Tx2n+1, Fx2n+1),
1

2
[d(Sz, Fx2n+1) + d(Tx2n+1, Ez)]

}

= d(Ez, z).

Choose ε = 1

2
d(Ez, z). Then there exists M1 > 0 such that for all n ≤ M1,

max

{

d(Sz, Tx2n+1), d(Sz,Ez), d(Tx2n+1, Fx2n+1),
1

2
[d(Sz, Fx2n+1) + d(Tx2n+1, Ez)]

}

− d(Ez, z) < ε
′

That is, ε′ = ε′ + d(Ez,Z) < max
{

d(Sz, Tx2n+1), d(Sz,Ez), d(Tx2n+1, Fx2n+1),
1

2
[d(Sz, Fx2n+1) + d(Tx2n+1, Ez)]

}

<

d(Ez, z) + ε′. Since lim
n→∞

d(Ez, Fx2n+1) = d(Ez, z) there exists M2 > M1 such that for all n ≥ M2, |d(Ez, Fx2n+1) −

d(Ez, z)| < ε

2
. That is − ε′

2
+ d(Ez, z) < d(Ez, Fx2n+1) < ε′ = 1

2
d(Ez, z) implies d(Ez, z) < ε′, a contradiction. Thus we

have Ez = z. Since E(x) ⊂ T (x), there exists u ∈ X such that Z = Sz = Ez = Tu. Further, we claim that z = Fu.

Otherwise

d(z, Fu) = d(Ez, Fu) < max

{

d(Sz, Tu), d(Sz.Ez), d(Tu, Fu),
1

2
[d(Sz, Fu) + d(Tu,Ez)]

}

= d(z, Fu)

Which is contraction and hence Z = Fu = Tu. Since, F & T are compatible maps. So, that d(TFu, FTu) = 0 ⇒ TFu =

FTu ⇒ Tz = Fz. Now, we claim that Fz = z. If Fz 6= z, then we have

d(z, Fz) = (Ez, Fz) < max

{

d(Sz, Tz), d(Sz,Ez), d(Tz, Fz),
1

2
[d(Sz, Fz) + d(Tz,Ez)]

}

= d(Fz, z)

A contradiction. Then we have, z = Fz = Tz. Therefore, z is a common fixed point of E, F, S & T.

Uniqueness of common fixed point z.

Suppose z∗ be a second common fixed point of E, F, S and T. Then again by using, we have

d(z, z∗) = d(Ez, Fz
∗) < max

{

d(Sz, Tz∗), d(Sz,Ez), d(Tz∗, F z∗),
1

2
[d(Sz, Fz) + d(Tz∗, Ez)]

}

= d(z, z∗)

Which is contradiction. Hence, z is a unique common fixed point of E, F, S and T. Similarly, we can also complete the proof

if T or E or F is continuous. This completes the proof.
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