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1. Introduction

Bivariate notions of aging and their related classes of life distributions defined by aging properties play a central role in

survival analysis, reliability theory, maintenance models and many other actuarial science, engineering, economics, biometry

and applied probability areas. They are also useful in obtaining fundamental inequalities of estimates. In the last four

decades, remarkable studies have been done on the different aspects of univariate life distributions. Recently, studies have

been attracted to establish bivariate life distributions.

2. Definitions and Some Related Concepts

In reliability theory, ageing life is usually characterized by a nonnegative random variable x ≥ 0 with cumulative distribution

function (cdf) F (·) and survival function F (·) = 1− F (·). For any random variable X, let

Xt
∼= [X − t|X > t], t ∈ {x : F (x) < 1}

denote a random variable whose distribution is the same as the conditional distribution of X − t given that X > t When

X is the lifetime of a device, Xt can be regarded as the residual lifetime of the device at time t, given that the device has

survived upto time t. Its survival function is

F t(x) =
F (t+ x)

F (t)
, F (t) > 0

where F (x) is the survival function of X

Remark 2.1. If F (·) is an exponential distribution then F t(x) = F (x)
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Some Properties of Bivariate Life Distributions

Definition 2.2 ([8]). A bivariate random variable (X,Y ) or its distribution F (t, s) is said to have Bivariate New Better

than Used (BNBU), if

F (x+ t, y + s) ≤ F (x, y) · F (t, s)

for x, y, t, s ≥ 0.

Definition 2.3 ([8]). A bivariate random variable (X,Y ) or its distribution F (t, s) is said to have Bivariate New Better

than Used in Expectation (BNBUA), if

∫ v

0

∫ u

0

F (x+ t, y + s) dt ds ≤ F (x, y)

∫ v

0

∫ u

0

F (t, s)dtds,

for x, y, t, s ≥ 0 and u, v are finite.

Definition 2.4 ([10]). A bivariate random variable (X,Y ) or its distribution F (t, s), having failure rate r(x, y), is said to

have Bivariate New Better than Used in Failure Rate Average (BNBUFRA), if

r(0, 0) ≤ 1√
t2 + s2

∫ t

0

∫ s

0

r(x, y)dydx ; for 0 ≤ t < ∞ and 0 ≤ s < ∞.

Definition 2.5. Let F and G be two arbitrary BIFR life distributions. We say that F is more BIFR than G, (written as,

F BIFR

<
G,) if

(

G−1 ◦ F
)

(x, y) is convex. If the failure rate exist, then an equivalent formulation is

rF
(

F−1(u, v)
)

rG (G−1(u, v))

is nondecreasing in v ∈ [0, 1]. This ordering is scale invariant.

Definition 2.6. Let F be a (family) class of absolutely continuous life distribution. Let F and G be two arbitrary life

distributions in F and F (0, 0) = 0, G(0, 0) = 0 with positive and right continuous densities f and g, respectively. F is convex

ordered with respect to G if, and only if G−1F is convex on the interwal, where 0 < F < 1. Assume that G is always fixed.

Let

H−1
F (t, s) =

∫ F−1(t)

0

∫ F−1(s)

0

g
[

G−1F (u, v)
]

du dv; 0 ≤ t, s ≤ 1.

Definition 2.7. Let F and G be continuous bivariate life distributions and G be increasing on its support and F (0, 0) =

0 ; G(0, 0) = 0, then F is star-shaped with respect to G, (written as, F ∗

<
G,) if

(

G−1 ◦ F
)

(x, y) is Star-shaped.

Equivalently,
(G−1F)(x,y)

xy
is increasing for x, y > 0.

Definition 2.8. Let F and G be two arbitrary BNBUE life distributions. We say that F is more BNBUE than G, (written

as, F BNBUE

<
G,) if

µF

(

F−1(u, v)
)

µG (G−1(u, v))
≤ µF

µG

, (1)

where the mean residual life of F is µF .

Definition 2.9. Let F and G be two arbitrary BDMRL life distributions. We say that F is more BDMRL than G, (written

as, F BDMRL

<
G,) if

µF (F−1(u,v))
µG(G−1(u,v))

is decreasing in u ∈ [0, 1] and decreasing in v ∈ [0, 1].

Definition 2.10. Let F and G be two arbitrary BHNBUE life distributions. We say that F is more BHNBUE than G,

(written as, F BHNBUE

<
G,) if

G−1

e
◦Fe(x,y)

xy
≥ µG

µF
for all x, y ≥ 0.

Definition 2.11. Let F and G be two arbitrary BNBUFR life distributions. We say that F is more BNBUFR than G,

(written as, F BNBUFR

<
G,) if α′(x, y) ≥ α′(0, 0), where α(x, y) =

(

G−1 ◦ F
)

(x, y) =
(

G
−1 ◦ F

)

(x, y).
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3. Formation of Coherent systems

It is often of interest in reliability applications to see if life distribution classes are preserved under the reliability operations.

This section studies the question whether the classes of Bivariate Life distributions under the operations of formation of

coherent systems are closed. The results show that, formation of coherent systems are closed.

Theorem 3.1. Suppose each of the independent components of a coherent system has a BNBU life distribution. Then the

system itself is a BNBU life distribution.

Proof. Let F denote the life distribution of a system, while Fi : i = 1, 2, . . . , n denotes the life distribution of the ith

component of the system. Then for 0 < α ≤ 1,

F (αt1, βt2) = h
[

F 1(αt1, βt2) , F 2(αt1, βt2) , . . . , Fn(αt1, βt2)
]

Since, each Fi is BNBU, F i(x+ t, y + s) ≤ F i(x, y) · F i(t, s) : i = 1, 2, . . . , n. Also, since h is increasing in each argument,

it follows that

F (αt1, βt2) ≥ h

[

F

√
α2+β2

1 (t1, t2) , F

√
α2+β2

2 (t1, t2) , . . . , F

√
α2+β2

n (t1, t2)

]

. (2)

Following, Barlow and Proschan (1975), a theorem, we have

h

[

F

√
α2+β2

1 (t1, t2) , F

√
α2+β2

2 (t1, t2) , . . . , F

√
α2+β2

n (t1, t2)

]

≥ h
√

α2+β2 [

F 1(t1, t2) , F 2(t1, t2) , . . . , Fn(t1, t2)
]

,

so that the inequality (5.1) becomes

F (αt1, βt2) ≥ h
√

α2+β2 [

F 1(t1, t2) , F 2(t1, t2) , . . . , Fn(t1, t2)
]

and this completes the proof of the theorem.

Remark 3.2. Let z = (z1, z2, . . . , zn) with zi = (xi, yi), where

zi =











1 if the component i functions

0 if the component i fails

for i = 1, 2, 3, . . . , n. Then the structure function of the system is

χ(z) =











1 if the system functions

0 if the system fails

A system is s-coherent if the structure function χ is non-decreasing and non-constant in any xi. The reliability function

h(p) of s-coherent system with structure function χ is defined by h(p) ≡ Pr {χ(z) = 1}, where the state of the component

in a s-coherent system are indicated by s independent random variables xi with Pr {zi = 1} = pi ; Pr {zi = 0} = 1 −

pi, i = 1, 2, 3, . . . , n. Let the component i have the survival probability F i(t, s) and the system have F (t, s), then F (t, s) =

h
(

F 1(t, s), F 2(t, s), . . . , Fn(t, s)
)

. The failure rate function ri of the component i is defined by ri(t, s) = − logF (t, s) and

the failure rate of the system is r (t, s) = − log h
[

e− r1(t,s), e− r2(t,s), . . . , e− rn(t,s)
]

. Define the failure rate transform by

η(r) ≡ − log h
[

e− r1 , e− r2 , . . . , e− rn
]

. It may be noted that the failure rate transform defined above is non-decreasing in

each argument and super-additive.

✸



Some Properties of Bivariate Life Distributions

Theorem 3.3. Suppose that each component of a s-coherent system has a bivariate NBUFRA distribution. Then the system

itself has a bivariate NBUFRA distribution.

Proof. Since the failure rate transformation is super-additive, the inequality

1√
t2 + s2

η(r(t, s)) ≥ lim
(u,v)↓(0,0)

1√
u2 + v2

η(r(u, v)), t, s > 0

is trivial if the right hand side is infinite. Now assume that the right hand side of the inequality is finite. Since, η has

continuous partial derivatives, we have

lim
(u,v)↓(0,0)

1√
u2 + v2

η(r(u, v)) =
n
∑

i=1

(

∂η(0, 0)

∂ri
· ∂ri(0, 0)

∂t
+

∂η(0, 0)

∂ri
· ∂ri(0, 0)

∂s

)

.

Since each component has BNBUFRA life distributions,

ri(t, s)√
t2 + s2

≥ lim
(u,v)↓(0,0)

1√
u2 + v2

ri(u, v).

By monotonicity and continuity of η, we have

1√
t2 + s2

η(r(t, s)) ≥ lim
(u,v)↓(0,0)

1√
t2 + s2

η

{
√
t2 + s2√
u2 + v2

r(u, v)

}

≥ lim
(u,v)↓(0,0)

lim
(s,t)↓(0,0)

1√
t2 + s2

η

{
√
t2 + s2√
u2 + v2

r(u, v)

}

≥
n
∑

i=1

(

∂η(0, 0)

∂ri
· ∂ri(0, 0)

∂t
+

∂η(0, 0)

∂ri
· ∂ri(0, 0)

∂s

)

= lim
(u,v)↓(0,0)

1√
u2 + v2

η(r(u, v))

This completes the proof.

Consider a system of n independent and not necessarily identical components in which the ith component has the survival

function F i = 1−Fi, i = 1, 2, . . . , n. Let h(p) = h(p1, p2, . . . , pn) denotes the system reliability function. In the next theorem,

we compare the random life times of two systems based on BIFR

<
ordering.

Theorem 3.4. If
∑n

i=1 pi
∂h(p)
∂pi

is increasing in pi for all i = 1, 2, . . . , n. Then h(X) BIFR

≤
h(Y ), whenever Xi

BIFR

≤
Y, i =

1, 2, . . . , n.

Proof. For z1, z2 > 0 and t, s ≥ 0, we have

rh(X)(z1 + t, z2 + s) =
n
∑

i=1

rXi
(z1 + t, z2 + s)FXi

(z1 + t, z2 + s)
1

h(p)

∂h(p)

∂pi

∣

∣

∣

∣

∣

pi=FXi
(z1+t,z2+s)

Since, Xi
BIFR

≤
Y, by definition, we have

rh(X) (z1 + t, z2 + s) ≥ rY (z1 + t, z2 + s)
n
∑

i=1

FXi
(z1 + t, z2 + s)

1

h(p)

≥ rY (z1 + t, z2 + s)
n
∑

i=1

FY (z1 + t, z2 + s)
1

h(p)

∂h(p)

∂pi

∣

∣

∣

∣

∣

pi=FXi
(z1+t,z2+s)

= rh(Y ) (z1 + t, z2 + s).

This completes the proof.
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Definition 3.5. Let Z1 = (X1, Y1) and Z2 = (X2, Y2) be the discrete bivariate random variables with survival functions

F (k1, k2) = Pr(X1 > k1 , Y1 > k2) and G(k1, k2) = Pr(X2 > k1 , Y2 > k2),

respectively for k1, k2 ∈ Z
+. The random variable Z1 is smaller than the random variable Z2 in generating function order,

(written as, Z1
g

<
Z2,) if

∞
∑

k1=0

∞
∑

k2=0

sk1 tk2F (k1, k2) ≤
∞
∑

k1=0

∞
∑

k2=0

sk1 tk2G(k1, k2),

for all 0 < s, t < 1.

Definition 3.6. A non-negative random variable Z = (X,Y ), with survival function F , is said to be a discrete BNBU

(BNWU) in probability generating function (pgf) order, (written as, F ∈ discrete BNBUpg (BNWUpg), ) if

∞
∑

k1=0

∞
∑

k2=0

sk1 tk2F (x+ k1, y + k2) ≤ (≥) F (x, y)

∞
∑

k1=0

∞
∑

k2=0

sk1 tk2F (k1, k2),

for all x, y ∈ Z
+ and 0 < s, t < 1.

Theorem 3.7. Let Z = (X,Y ), be a bivariate random variable with distribution function F and let W = h(Z) where

h : Z+ −→ Z
+ is increasing and g denote the inverse of h. If Z is a discrete BNBUpg and g(x) is star-shaped, then W is

also a discrete BNBUpg.

Proof. Let G denote the distribution of W = h(Z). Then

G(k1, k2) = G (g(k1), g(k2)) .

Since Z is a discrete BNBU in probability generating function order

∞
∑

k1=0

∞
∑

k2=0

sk1 tk2F (x+ k1, y + k2) ≤ F (x, y)

∞
∑

k1=0

∞
∑

k2=0

sk1 tk2F (k1, k2),

Consider

sk1 tk2G(k1, k2)
∞
∑

l1=0

∞
∑

l2=0

sl1 tl2G(l1, l2) −
∞
∑

l1=k1

∞
∑

l2=k2

sl1 tl2G(l1, l2)

= sk1 tk2G(k1, k2)

k1
∑

l1=0

k1
∑

l2=0

sl2 tl2G(l1, l2)

−
[

1− sk1 tk2G(k1, k2)
]

∞
∑

l1=k1+1

∞
∑

l2=k2+1

sl1 tl2G(l1, l2)

= sk1 tk2G(g(k1), g(k2))

k1
∑

l1=0

k1
∑

l2=0

sl2 tl2G(g(l1), g(l2))

−
[

1− sk1 tk2G(g(k1), g(k2))
]

∞
∑

l1=k1+1

∞
∑

l2=k2+1

sl1 tl2G(g(l1), g(l2))

≥ sk1 tk2G(g(k1), g(k2))

k1
∑

l1=0

k1
∑

l2=0

sl2 tl2G

(

g(k1)

k1
l1 ,

g(k2)

k2
l2

)

−
(

1− sk1 tk2G(g(k1), g(k2))
)

∞
∑

l1=k1+1

∞
∑

l2=k2+1

sl1 tl2G

(

g(k1)

k1
l1 ,

g(k2)

k2
l2

)

✺
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= sα1g(k1) tα2g(k2)G(g(k1), g(k2))

g(k1)
∑

y1=0

g(k1)
∑

y2=0

sα1y1 tα2ly2G (y1, y2)

−
[

1− sα1g(k1) tα2g(k2)G(g(k1), g(k2))
]

∞
∑

y1=g(k1)+1

∞
∑

y2=g(k2)+1

sα1y1 tα2y2G (y1, y2)

= sα1g(k1) tα2g(k2)G(g(k1), g(k2))
∞
∑

y1=0

∞
∑

y2=0

sα1y1 tα2ly2G (y1, y2)

−
∞
∑

y1=g(k1)+1

∞
∑

y2=g(k2)+1

sα1y1 tα2y2G (y1, y2) ,

which is positive, since Z is a discrete BNBUpg. The inequality is because g is star-shaped and where y1 = g(k1)
k1

l1 ; y2 =

g(k2)
k2

l2 with α1 = k1

g(k1)
; α2 = k2

g(k2)
. It follows that W is also a discrete BNBUpg and the proof is complete.

We next state the dual cse of the preceding result in the next theorem.

Theorem 3.8. Let Z = (X,Y ), be a bivariate random variable with distribution function F and let W = h(Z) where

h : Z+ −→ Z
+ is increasing and g denote the inverse of h. If Z is a discrete BNWUpg and g(x) is star-shaped, then W is

also a discrete BNWUpg.

4. Preservation Properties and Partial Ordering for some Bivariate

Life Distributions

In this section, we prove some preservation properties and the Properties on Partial Ordering for some Bivariate Life

Distributions.

Theorem 4.1. If F1
C

<
F2, F1, F2, G ∈ F, gG−1 is uniformly continuous on [0, 1], then

H
−1

F1
(t,s)

H
−1

F1
(1,1)

≥
H

−1

F2
(t,s)

H
−1

F2
(1,1)

; 0 ≤ t, s ≤ 1.

If in addition, F2
C

<
G, then

H
−1

F2
(t,s)

H
−1

F2
(1,1)

≥ ts ; 0 ≤ t, s ≤ 1.

Proof. If F1
C

<
F2, then

f1(x,y)

f2[f−1

2
F1(x,y)]

is increasing in x and increasing in y. This implies that
f1[(F−1

1
(u),F−1

1
(v))]

f2[(F−1

2
(u),F−1

2
(v))]

is

increasing in u and increasing in v. Hence

H−1
F1

(t, s)

H−1
F1

(1, 1)
−

H−1
F2

(t, s)

H−1
F2

(1, 1)
=

∫ t

0

∫ s

0

[

1

H−1
F1

(1, 1)
× g

(

G−1(u), G−1(v)
)

f1
[(

F−1
1 (u), F−1

1 (v)
)] − 1

H−1
F2

(1, 1)
× g

(

G−1(u), G−1(v)
)

f2
[(

F−1
2 (u), F−1

2 (v)
)]

]

dv du

=

∫ t

0

∫ s

0

[

1

H−1
F1

(1, 1)
× f2

(

F−1
2 (u), F−1

2 (v)
)

f1
[(

F−1
1 (u), F−1

1 (v)
)] − 1

H−1
F2

(1, 1)

]

× g
(

G−1(u), G−1(v)
)

f2
[(

F−1
2 (u), F−1

2 (v)
)] dv du

=

∫ t

0

∫ s

0

h(u, v)× g
(

G−1(u), G−1(v)
)

f2
[(

F−1
2 (u), F−1

2 (v)
)] dv du

Since
∫ 1

0

∫ 1

0

h(u, v)× g
(

G−1(u), G−1(v)
)

f2
[(

F−1
2 (u), F−1

2 (v)
)] dv du = 0

and h(u, v) has atmost one change of sign and if one change of sign actually occurs, it follows that,

∫ t

0

∫ s

0

h(u, v)× g
(

G−1(u), G−1(v)
)

f2
[(

F−1
2 (u), F−1

2 (v)
)] dv du ≥ 0

and the first inequality follows. Since, H−1
G (t, s) = ts, we have

H
−1

F1
(t,s)

H
−1

F1
(1,1)

≥
H

−1

F2
(t,s)

H
−1

F2
(1,1)

; 0 ≤ t, s ≤ 1. This completes the proof

of the theorem.

6
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Remark 4.2. F ∗

<
G is equivalent to F is BIFRA, if G is a bivariate exponential distribution.

Theorem 4.3. If F ∗

<
G and if G is a bivariate exponential distribution, then

(

G−1 ◦ F
)

(x, y) is Star-shaped.

Proof. Let F be BIFRA, then − logF (t, s) is star shaped. Also, − log
[

e−λ1t−λ2s−λ12 max(t,s)
]

is linear. Clearly, both the

functions passing through the origin. Thus − logF (t, s) crosses − log
[

e−λ1t−λ2s−λ12 max(t,s)
]

at most once and if a crossing

occur, − logF (t, s) crosses − log
[

e−λ1t−λ2s−λ12 max(t,s)
]

from below. It follows that F (t, s) crosses the bivariate exponential

hazard function at most once and if it crosses, it does from above. It follows that
(

G−1 ◦ F
)

(x, y) is Star-shaped. This

completes the proof of the theorem.

Remark 4.4 (Geometric characterization of BNBU). The bivariate life distribution F with bivariate hazard function R =
∫ x

0

∫ y

0
r(u, v)dv du is BNBU if and only if R is super additive.

Theorem 4.5. The bivariate life distribution F is more BNBU than G if
(

G−1 ◦ F
)

(x, y) is super additive.

Proof. The hazard function of
(

G−1 ◦ F
)

(x, y) is R(x, y) = f(x,y)

g[G−1F (x,y)]
. Consider

R(x+ t, y + s) =
f(x+ t, y + s)

g [G−1F (x+ t, y + s)]

=
f
[

F−1(u1) + F−1(u2) , F−1(v1) + F−1(v2)
]

g [G−1(u1) +G−1(u2) , G−1(v1) +G−1(v2)]

≥ f
[

F−1(u1) , F−1(v1)
]

+ f
[

+F−1(u2) , F−1(v2)
]

g [G−1(u1) +G−1(u1) , G−1(v1) +G−1(v1)]

≥ f
[

F−1(u1) , F−1(v1)
]

g [G−1(u1) +G−1(u1) , G−1(v1) +G−1(v1)]
+

f
[

+F−1(u2) , F−1(v2)
]

g [G−1(u1) +G−1(u1) , G−1(v1) +G−1(v1)]

≥ f
[

F−1(u1) , F
−1(v1)

]

g [G−1F (x, y)]
+

f
[

+F−1(u2) , F
−1(v2)

]

g [G−1F (x, y)]

≥ f(x, y)

g [G−1F (x, y)]
+

f(t, s)

g [G−1F (x, y)]

= R(x, y) +R(t, s).

Therefore, R is super additive and hence F is more BNBU than G. This completes the proof of the theorem.

Theorem 4.6. If G is a bivariate exponential distribution, then F BNBUE

<
G if and only if F is BNBUE.

Proof. Let X = (X1, X2) be a random vector admitting absolutely continuous cdf in the support of the first quadrant

{(x1, x2)/xi ≥ 0, i = 1, 2} of the two-dimensional space R
2 with X = (x1, x2) and X ≥ x denoting Xi > xi, i = 1, 2 the

bivariate mean residual life function of X is defined as µF (X) = E {X− t / X > t} where t = (t1, t2) is a vector of non-

negative real numbers. The cdf of X is F (t) = Pr {X > t} = 1− F1(t1)− F2(t2) + F (t1, t2) where, F1 and F2 are the cdf’s

of X1 and X2, respectively. Also

F(t) =
F2(t2)µF1

(0, t2)

µF1
(t)

exp

{

−
∫ t1

0

dx1

µF1
(x1, t2)

}

=
F1(t1)µF2

(t1, 0)

µF2
(t)

exp

{

−
∫ t2

0

dx2

µF2
(t1, x2)

}

,

where, µFi
(t) = E {Xi − ti / X > t} : i = 1, 2 is the ith component of µF (t).
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Theorem 4.7. If G is a bivariate exponential distribution, then F BDMRL

<
G if and only if F is BDMRL.

Proof. Let F be the class of bivariate life distribution functions. Let F,G ∈ F have bivariate mean residual life functions

µF (x, y), µG(x, y) and bivariate equilibrium survival functions

Fe(x, y) =

∫ ∞

x

∫ ∞

y

F (t, s)

µF (0, 0)
ds dt and

Ge(x, y) =

∫ ∞

x

∫ ∞

y

G(t, s)

µG(0, 0)
ds dt

Define WF (u, v) = F ◦ F−1
e (u, v) and WG(u, v) = G ◦G−1

e (u, v) : 0 ≤ u, v ≤ 1. Here, WF and WG are proper bivariate life

distribution functions. Since G is a bivariate exponential distribution, we have WG(u, v) = uv. It follows that
µF (F−1(u,v))
µG(G−1(u,v))

is equivalent to W−1
F ◦WG(u, v) is star-shaped for 0 ≤ u, v ≤ 1. This implies that

µF (F−1(u,v))
µG(G−1(u,v))

is decreasing in 0 ≤ u, v ≤ 1

and so F is BDMRL. This completes the proof of the theorem.

Theorem 4.8. If G is a bivariate exponential distribution, then F BHNBUE

<
G if and only if F is a BHNBUE distribution.

Proof. Let G be a bivariate exponential distribution. Let F BHNBUE

<
G, then

G−1
e ◦ Fe(x, y)

xy
≥ µG

µF

; for all x, y ≥ 0.

The rest of the proof is on similar lines of Theorem 4.4.

Theorem 4.9. If G is a bivariate exponential distribution, then F BNBUFR

<
G if and only if F is a BNBUFR distribution.

Proof. F is a BNBUFR distribution, if r(x, y) ≥ r(0, 0) for all x, y > 0.
[(

G−1 ◦ F
)

(x, y)
]′ ≥

[(

G−1 ◦ F
)

(0, 0)
]′

≥
[

G−1 (F (0, 0))
]′

≥
[

G−1(0, 0)
]′

≥
[

(G(0, 0))′
]−1

=
[

(1)′
]−1

= 0

This implies that,
(

G−1 ◦ F
)

is increasing in x ≥ 0 and y ≥ 0. It follows that,

F is a BNBUFR distribution and the proof is complete.

Theorem 4.10. Let Z1, Z2, . . . , Zn, where Zi = (Xi, Yi), be iid random variables with distribution F (·, ·) and F be BNBUA.

Then X(n) = max(X1, X2, . . . , Xn) has the distribution Fn(·, ·) is BNBUA.

Proof. F is BNBUA, if
∫ v

0

∫ u

0

F (x+ t, y + s) dt ds ≤ F (x, y)

∫ v

0

∫ u

0

F (t, s) dt ds,

for x, y, t, s ≥ 0 and u, v are finite. On substituting x+ t = α and y + s = β, we have

∫ v+y

y

∫ u+x

x

F (α, β) dα dβ ≤ F (x, y)

∫ y

0

∫ x

0

F (t, s) dt ds + F (x, y)

∫ v+y

y

∫ u+x

x

F (α, β) dα dβ

That is,
∫ v+y

y

∫ u+x

x

F (α, β)

F (x, y)
dα dβ ≤

∫ y

0

∫ x

0

F (t, s) dt ds +

∫ v+y

y

∫ u+x

x

F (α, β) dα dβ.

This gives,
∫ v+y

y

∫ u+x

x

[

F (α, β)

F (x, y)
− F (α, β)

]

dα dβ ≤
∫ y

0

∫ x

0

F (α, β) dα dβ.
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Since F is a bivariate NBUA distribution, we have

∫ y

0

∫ x

0

F (α, β) dα dβ ≤
∫ y

0

∫ x

0

F
n
(α, β) dα dβ (6.1)

and
∫ v+y

y

∫ u+x

x

F (α, β)

F (x, y)
· F (x, y) dα dβ ≥

∫ v+y

y

∫ u+x

x

F
n
(α, β)

F
n
(x, y)

· Fn(x, y) dα dβ (6.2)

This implies that
∫ v+y

y

∫ u+x

x

[

F (α, β)

F (x, y)
· F (x, y) − F

n
(α, β)

F
n
(x, y)

· Fn(x, y)

]

dα dβ ≥ 0

It follows that

∫ v+y

y

∫ u+x

x

F (α, β)

F (x, y)
· F (x, y)

{

1− F
n−1

(α, β)
F

n
(α, β)

F (α, β)
· F (x, y)

F
n
(x, y)

}

dα dβ

=

∫ v+y

y

∫ u+x

x

F (α, β)

F (x, y)
· F (x, y)×

{

1− F
n−1

(α, β)
1 + F (α, β) + · · ·+ Fn(α, β)

1 + F (x, y) + · · ·+ Fn(x, y)

}

dα dβ

≥
∫ v+y

y

∫ u+x

x

F (α, β)

F (x, y)
· F (x, y)×

{

1− F
n−1

(α, β)
1 + F (x, y) + · · ·+ Fn(x, y)

1 + F (x, y) + · · ·+ Fn(x, y)

}

dα dβ

≥ 0.

Since F (x, y) ≤ F (α, β) for x ≤ α and y ≤ β. Hence, we have from equations (6.1) and (6.2)

∫ v+y

y

∫ u+x

x

Fn(x, y)
F

n
(α, β)

F
n
(x, y)

dα dβ ≤
∫ y

0

∫ x

0

F
n
(α, β) dα dβ

If and only if
∫ v+y

y

∫ u+x

x

Fn(x, y)
Fn(α, β)

Fn(x, y)
dα dβ ≤

∫ y

0

∫ x

0

Fn(α, β) dα dβ.

Equivalently, we can write

∫ y

0

∫ x

0

Fn(u+ α, v + β) dα dβ ≤ Fn(u, v)

∫ y

0

∫ x

0

Fn(α, β) dα dβ,

so that, Fn is a bivariate NBUA. Thais completes the proof.

5. Conclusion

In this paper, we have introduced some new class of bivariate life distributions and established the closure properties under

the Formation of Coherent systems. We also studied some properties on Partial Ordering and Preservation Properties for

some Bivariate Life Distributions.
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