

International Journal of Current Research in Science and Technology

Fuzzy Basis

Research Article

M. Muthukumari
1 $^{\ast},$ A. Nagarajan² and M. Murugaling
am³

- 1 Research scholar, V.O.C. College, Tuticorin, Tamilnadu, India.
- 2 Department of Mathematics, V.O.C. College, Tuticorin, Tamilnadu,India.
- 3 Department of Mathematics, Thiruvalluvar College, Papanasam, Tamilnadu, India.

Abstract: We introduce fuzzy basis and strong fuzzy basis.Keywords: Fuzzy basis, Strong fuzzy basis.© JS Publication.

1. Introduction

In metric space and topological space the concept of base(basis) plays an important role. In the year 1965 Lotfi A.Zadeh [2] introduced the concept of fuzzy sets and fuzzy logic. In the year 1968 C.L.Chang [1] introduced Fuzzy topological spaces. In the year 2014 We [3] introduced fuzzy sequences in a metric space. In the same year we [6] introduced fuzzy subsequences and limit points. In the same year we [4, 5] defined fuzzy net and fuzzy filter.

In this paper we introduce fuzzy basis and strong fuzzy basis.

2. Fuzzy Basis

Now we recall the definition base for a topology in a topological space. Let X be a non empty set. $\mathbf{B} \subset P(X)$ is called a base if (1). $\cup \{B/B \in \mathbf{B}\} = X$. (2). $U, V \in \mathbf{B}$ and $x \in U \cap V$ implies there exists $W \in \mathbf{B}$ such that $x \in W \subset U \cap V$. Let T be the collection of all union of finite number of elements of **B**. Then T is a topology and **B** is a base for the topology. Now we fuzzify the concept.

Definition 2.1 (Fuzzy Basis). Let X be a non empty set. A function $f: P(X) \to [0,1]$ is called a fuzzy base if

(1).
$$\cup \{B/f(B) = 1\} = X.$$

(2). For each $\alpha \in (0,1]$. $f(U) \ge \alpha$, $f(V) \ge \alpha$ and $x \in U \cap V$ implies there exists W with $f(W) \ge \alpha$ and $x \in W \subset U \cap V$.

Example 2.2. $X = \{a, b, c, d\}, f : P(X) \to [0, 1] \text{ as } f(X) = 1, f\{a, b, c\} = 1, f\{b, c, d\} = 1, f\{c\} = 1, f\{a, b, d\} = 0.6, f\{a, b, c\} = 0.6, f\{a\} = 0.6, f\{d\} = 0.6 \text{ and } f(A) = 0 \text{ for all other } A \subset X, f \text{ is a fuzzy basis. Take } \alpha = 0.8.$ Take $U = \{a, b, c\}, V = \{b, c, d\}, f(U) \ge \alpha, f(V) \ge \alpha, b \in U \cap V.$

 $^{^{*}}$ E-mail: mkumarimaths@yahoo.com

Take $W = \{b\}$. $b \in W \subset U \cap V$ and $f(W) = f\{b\} = 1 \ge \alpha$. Take $\alpha = 0.6$. Take $U = \{a, b, d\}, V = \{a, b, c\}$. $f(U) \ge \alpha$, $f(V) \ge \alpha$ and $a \in U \cap V$. Take $W = \{a\}$. Then $f(W) \ge \alpha$ and $a \in W \subset U \cap V$. $f(U) \ge \alpha$, $f(V) \ge \alpha$ and $b \in U \cap V$. Take $u = \{b\}$. Then $f(W) \ge \alpha$ and $b \in W \subset U \cap V$.

We can verify all other possibilities. Hence f is a fuzzy basis.

Example 2.3. $X = \{a, b, c\}$. Define $f : P(X) \to [0, 1]$ as $f\{a, b, c\} = 1$, $f\{a, b\} = 0.6$, $f\{b, c\} = 0.6$ and f(A) = 0 for all other cases. Take $\alpha = 0.6$. Take $U = \{a, b\}, V = \{b, c\}, f(U) \ge \alpha$, $f(V) \ge \alpha$, $b \in U \cap V$. The only W with $b \in W \subset U \cap V$ is $\{b\}$ and $f\{b\} = 0$. Hence there exists no W with $f(W) \ge \alpha$ and $b \in W \subset U \cap V$. Hence f is not a fuzzy basis.

Example 2.4. $X = \{a, b, c\}$. Define $f : P(X) \to [0, 1]$ as $f\{a, b\} = 1$, $f\{b\} = 1$ and f(A) = 0.5 for all other A. Now $\cup \{B/f(B) = 1\} = \{a, b\} \cup \{b\} = \{a, b\} \neq X$. Hence f is not a fuzzy basis.

We can give another definition of fuzzy basis. The second condition is modified.

Definition 2.5 (Strong fuzzy basis). Let X be a non empty set. A function $f : P(X) \to [0, 1]$ is called a strong fuzzy basis if

(1). $\cup \{B/f(B) = 1\} = X.$

(2). $f(U \cap V) \ge \min\{f(U), f(V)\}$ for $U, V \subset X$ with $U \cap V \neq \phi$.

Example 2.6. $X = \{a, b, c, d\}$. Define $f : P(X) \to [0, 1]$ as f(X) = 1, $f\{a, b, c\} = 0.5$, $f\{a, b, d\} = 0.6$, $f\{a, b\} = 0.5$, f(A) = 0 for all other A.

- (1). $\cup \{B/f(B) = 1\} = X.$
- (2). Take $U = \{a, b, c\}, V = \{a, b, d\}, U \cap V = \{a, b\}, f(U \cap V) = 0.5, \min\{f(U), f(V)\} = \min\{0.5, 0.6\} = 0.5$. Now $f(U \cap V) \ge \min\{f(U), f(V)\}$. f is a strong fuzzy basis.

Theorem 2.7. Every strong fuzzy basis is a fuzzy basis.

Proof. Let X be a non empty set. Let $f: P(X) \to (0,1]$ be a strong fuzzy basis. Then (1). $\cup \{B/f(B) = 1\} = X$. (2). Take U,V with $U \cap V \neq \phi$. Then $f(U \cap V) \ge \min\{f(U), f(V)\}$.

Claim : f is a fuzzy basis. (1). $\cup \{B/f(B) = 1\} = X$. (2). Let $\alpha \in (0, 1]$. Let $f(U) \ge \alpha$, $f(V) \ge \alpha$ and $x \in U \cap V$. Now take $W = U \cap V$. Now $x \in W \subset U \cap V$. Also $f(W) = f(U \cap V) \ge \min\{f(U), f(V)\} \ge \alpha$. So $f(W) \ge \alpha$. Hence there exists W such that $x \in W \subset U \cap V$ and $f(W) \ge \alpha$. Hence f is a fuzzy basis.

Result 2.8. Converse is not true. A fuzzy basis need not be a strong fuzzy basis.

Example 2.9. $X = \{a, b, c, d\}$. Define: $f : P(X) \to [0, 1]$ as $f\{a, b, c, d\} = 1$, $f\{a, b, c\} = 0.6$, $f\{b, c, d\} = 0.6$, $f\{b\} = 0.6$, $f\{c\} = 0.6$, f(A) = 0 for all other A. Now condition 1 is satisfied. Condition 2 is satisfied. Hence f is a fuzzy basis. $U = \{a, b, c\}$, $V = \{b, c, d\}$, $U \cap V = \{b, c\}f(U \cap V) = f\{b, c\} = 0$. $\min\{f(U), f(V)\} = \min\{0.6, 0.6\} = 0.6f(U \cap V)$ is not greater than or equal to $\min\{f(U), f(V)\}$. Hence f is not a strong fuzzy basis.

Theorem 2.10. Every crisp basis induces a fuzzy basis.

Proof. Let X be a non empty set. Let **B** be a crisp basis. Define $f : P(X) \to [0, 1]$ as f(A) = 1 if $A \in \mathbf{B}$ and f(A) = 0 if $A \notin \mathbf{B}$

(1). $\cup \{B/f(B) = 1\} = \cup \{B/B \in \mathbf{B}\} = X$, by definition of crisp basis.

8

(2). Take $\alpha \in (0,1]$. Let $f(U) \ge \alpha$, $f(V) \ge \alpha$ and $x \in U \cap V$. $f(U) \ge \alpha$ and $f(V) \ge \alpha$ implies f(U) = 1 and f(V) = 1. This implies that $U, V \in \mathbf{B}$. Since \mathbf{B} is a crisp basis $\exists W \in \mathbf{B} \ x \in W \subset U \cap V$. Since $W \in \mathbf{B}$, f(W) = 1 and hence $f(W) \ge \alpha$.

Hence $\exists W$ such that $x \in W \subset U \cap V$ and $f(W) \geq \alpha$. Hence f is a fuzzy basis. Hence every crisp basis induces a fuzzy basis.

Result 2.11. The fuzzy basis induced by a crisp basis need not a strong fuzzy basis.

Example 2.12. Consider R^2 with usual metric topology. Let B = Set of all open circles. The induced fuzzy basis is $f: P(X) \to [0,1]$ defined as f(A) = 1 if A is a circle and f(A) = 0 if A is not a circle. Clearly f is a fuzzy basis. Now we claim that f is not strong. Let U and V be two circles where $U \cap V \neq \phi$. Let U and V be not concentric. Then $U \cap V$ is not a circle. Hence $f(U \cap V) = 0$. Since U and V are circles f(U) = 1 and f(V) = 1. Hence $\min\{f(U), f(V)\} = 1$. Now $f(U \cap V)$ is not greater than or equal to $\min\{f(U), f(V)\}$. Hence f is not strong. Therefore the fuzzy basis induced by a crisp basis need not be strong.

Now we try to identify crisp basis giving strong fuzzy basis. For this we improve the crisp basis.

Definition 2.13 (Strong crisp basis). Let X be a non empty set. $B \subset P(X)$ is called a strong crisp basis if

- (1). $\cup \{B/B \in B\} = X.$
- (2). $U, V \in \mathbf{B}, U \cap V \neq \phi \Rightarrow U \cap V \in \mathbf{B}.$

Example 2.14.

- (1). $X = \{a, b, c\}, B = \{\{a, b\}, \{b, c\}, \{b\}\}$
- (2). $X = \{a, b, c, d\}, B = \{\{a, b, c\}, \{b, c, d\}, \{b, c\}\}.$

Theorem 2.15. The fuzzy basis induced by a strong crisp basis is a strong fuzzy basis.

Proof. Let X be a non empty set. Let **B** be a strong crisp basis. Let f be the induced fuzzy basis. We claim that f is a strong fuzzy basis. Take $U, V \in P(X)$ where $U \cap V \neq \phi$. If f(U) = 0 or f(V) = 0 then whatever be the value of $f(U \cap V)$, we have $f(U \cap V) \ge \min\{f(U), f(V)\}$. If f(U) = 1 and f(V) = 1 then $U, V \in B$. Since B is a strong basis, $U \cap V \in \mathbf{B}$. Hence $f(U \cap V) \ge \min\{f(U), f(V)\} \ge \min\{f(U), f(V)\}$. Hence f is a strong fuzzy basis.

References

- [1] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [2] L.A.Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.
- [3] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzy Sequences in Metric Spaces, Int. Journal of Math. Analysis, 8(15)(2014), 699-706.
- [4] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzy Nets, Int. Journal of Math. Analysis, 8(35)(2014), 1715-1721.
- [5] M.Muthukumari, A.Nagarajan and M.Murugalingam, *Fuzzification of Filters*, Mathematical Sciences International Research Journal, 3(2)(2014), 669-671.
- [6] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzy Subsequences and Limit points, Int. Jr. of Mathematics Sciences & Applications 5(2)(2015), 227-232.