

International Journal of Current Research in Science and Technology

Fuzzy Map

Research Article

M. Muthukumari
1, A. Nagarajan² and M. Murugaling
am³ \ast

1 Research scholar, V.O.C. College, Tuticorin, Tamilnadu, India.

2 Department of Mathematics, V.O.C. College, Tuticorin, Tamilnadu,India.

3 Department of Mathematics, Thiruvalluvar College, Papanasam, Tamilnadu, India.

Abstract: We introduce the new type of map called fuzzy map. Keywords: Fuzzy map, fuzzy sets, fuzzy logic.

© JS Publication.

1. Introduction

In metric space and topological space the concept of functions plays an important role. In the year 1965 Lotfi A.Zadeh [2] introduced the concept of fuzzy sets and fuzzy logic. In the year 1968 C.L.Chang [1] introduced Fuzzy topological spaces. In the year 2014 We [3] introduced fuzzy sequences in a metric space. In the same year we [6] introduced fuzzy subsequences and limit points. In the same year we [4, 5] defined fuzzy net and fuzzy filter.

In this paper we introduce a new function called fuzzy map.

2. Fuzzy Map

Let X and Y be two non empty sets. A map or function is a rule which assigns to each element of X an unique element in Y. This is a crisp concept. Now we try to fuzzify this concept.

Definition 2.1. Let X and Y be two non empty sets. A function $F : X \times Y \rightarrow [0,1]$ is said to be a fuzzy map from X to Y. i.e., A fuzzy map from X to Y is a fuzzy set on $X \times Y$.

Example 2.2. $F : [0,1] \times (-1/2, 1/2) \rightarrow [0,1]$ defined as $F(a,b) = \mod (a+b)/2$ for all $(a,b) \in [0,1] \times (-1/2, 1/2)$. Here *F* is a fuzzy map.

 $F: Q \times Q \rightarrow [0,1]$ defined as F(a,b) = a + b if $a + b \in [0,1]$ and 1 otherwise. Here F is a fuzzy map.

Theorem 2.3. Every crisp map is a fuzzy map.

Proof. Let $f: X \times Y$ be a crisp map. This function f can also be defined as a function $F: X \times Y \to [0,1]$ such that F(x,y) = 1 if f(x) = y and 0 otherwise. Here F is a fuzzy map. Therefore every crisp map is a fuzzy map.

^{*} E-mail: mmmurugalingam@yahoo.com

Result 2.4. Converse is not true.

Example 2.5. Consider $F : [0,1] \times [0,1] \rightarrow [0,1]$ defined as F(a,b) = (a+b) if $a+b \in [0,1]$ and 0 otherwise. Here F is a fuzzy map, but not a crisp map.

Definition 2.6. Let F be a fuzzy map from X to Y. Let $x_0 \in X$, then the image of x_0 denoted as $F(x_0)$ is defined as $F(x_0) = \{y \in Y | F(x_0, y) = 1\}.$

Example 2.7. Let $X = \{1, 2, 3\}$ and $Y = \{4, 5, 6\}$. Consider the fuzzy map F defined as F(a, b) = 1 if $a + b \ge 7$ and 0 otherwise. $F(1) = \{6\}, F(2) = \{5, 6\}, F\{3\} = \{4, 5, 6\}.$

Definition 2.8. Let F be a fuzzy map from X to Y. Let A be a non empty subset of X. Image of the set A denoted as F(A) is defined as $F(A) = \{y \in Y/F(x_0, y) = 1 \text{ for some } x_0 \in A\}.$

Example 2.9. Let $X = \{1, 2, 3\}$ and $Y = \{4, 5, 6\}$. Consider the fuzzy map F defined as F(a, b) = 1 if $a + b \ge 7$ and 0 otherwise. Let $A = \{1, 2\}$, $F(A) = \{5, 6\}$.

Theorem 2.10. Let F be a fuzzy map from X to Y. Let A and B be two non empty sets of X. Then $F(A \cup B) = F(A) \cup F(B)$.

Proof. Clearly $F(A \cup B) \subset Y$ and $F(A) \cup F(B) \subset Y$. Let $y \in F(A \cup B)$. Then $\exists x \in A \cup B$ such that F(x, y) = 1. Since $x \in A \cup B$, $x \in A$ or $x \in B$. Therefore $y \in F(A)$ or $y \in F(B)$. Hence $y \in F(A) \cup F(B)$. Therefore $F(A \cup B) \subset F(A) \cup F(B)$. Now, Let $y \in F(A) \cup F(B)$ then $y \in F(A)$ or $y \in F(B)$. If $y \in F(A)$ then $\exists x_1 \in A$ such that $F(x_1, y) = 1$. Here $x_1 \in A$. Therefore $x_1 \in A \cup B$ such that $F(x_1, y) = 1$. Hence $y \in F(A \cup B)$. If $y \in F(B)$ then $\exists x_2 \in B$ such that $F(x_2, y) = 1$. Here $x_2 \in B$. $x_2 \in A \cup B$ such that $F(x_2, y) = 1$. Hence $y \in F(A \cup B)$. Therefore $F(A) \cup F(B) \subset F(A \cup B)$. Hence $F(A \cup B) = F(A) \cup F(B)$.

Theorem 2.11. Let F be a fuzzy map from X to Y. Let A and B be two non empty sets of X. Then $F(A \cap B) \subset F(A) \cap F(B)$.

Proof. Let $y \in F(A \cap B)$. Then $\exists x \in A \cap B$ such that F(x, y) = 1. Since $x \in A \cap B$, $x \in A$ and $x \in B$. Hence $y \in F(A)$ and $y \in F(B)$. Therefore $y \in F(A) \cap F(B)$. Hence $y \in F(A \cap B) \Rightarrow y \in F(A) \cap F(B)$. Therefore $F(A \cap B) \subset F(A) \cap F(B)$. \Box

Result 2.12. The equality does not hold.

Example 2.13. Let $X = \{1, 2, ..., 10\}$ and $Y = \{0, 1, 2, ..., 10\}$. Let F be a fuzzy map from X to Y such that F(2,5) = 1 and F(8,5) = 1 and when $(a,b) \neq (2,5)$ and $(a,b) \neq (8,5)$, F(a,b) = (a+b)/5 if $(a+b)/5 \in [0,1]$ and 0 otherwise. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{5, 6, 7, 8, 9, 10\}$. Here $A \cap B = \{5\}$ and so $F(A \cap B) = \{0\}$, $F(A) = \{0, 1, 2, 4, 5\}$ and $F(B) = \{0, 5\}$. Here $F(A) \cap F(B) = \{0, 5\}$. Hence $F(A \cap B) \neq F(A) \cap F(B)$.

Definition 2.14. Let F be a fuzzy map from X to Y. Let $y \in Y$. Then the inverse image of y in F denoted as $F^{-1}(y)$ is defined as $F^{-1}(y) = \{x \in X/F(x, y) = 1\}.$

Example 2.15. Let $X = \{1, 2, 3\}$ and $Y = \{4, 5, 6\}$. Consider the fuzzy map F defined as F(a, b) = 1 if $a + b \ge 7$ and 0 otherwise. Let $B = \{5, 6\}$, $F^{-1}(B) = \{1, 2, 3\}$.

Definition 2.16. Let F be a fuzzy function from X to Y. Let B be a non empty subset of Y. Then $F^{-1}(B) = \{x \in X/F(x,y) = 1 \text{ for some } y \in B\}.$

Example 2.17. Let $X = \{1, 2, 3\}$ and $Y = \{4, 5, 6\}$. Consider the fuzzy map F defined as F(a, b) = 1 if $a + b \ge 7$ and 0 otherwise. Let $B = \{5, 6\}$, $F^{-1}(B) = \{1, 2, 3\}$.

Theorem 2.18. Let F be a fuzzy function from X to Y. Let B_1 and B_2 be two non empty subsets of Y. Then $F^{-1}(B_1 \cup B_2) = F^{-1}(B_1) \cup F^{-1}(B_2)$.

Proof. Clearly $F^{-1}(B_1 \cup B_2) \subset X$ and $F^{-1}(B_1) \cup F^{-1}(B_2) \subset X$. Let $x \in F^{-1}(B_1 \cup B_2)$. Then $\exists y \in B_1 \cup B_2$ such that F(x, y) = 1. i.e., $y \in B_1$ or $y \in B_2$ such that F(x, y) = 1. Therefore $x \in F^{-1}(B_1)$ or $x \in F^{-1}(B_2)$. Therefore $x \in F^{-1}(B_1) \cup F^{-1}(B_2)$. Therefore $x \in F^{-1}(B_1) \cup F^{-1}(B_2)$. Therefore $x \in F^{-1}(B_1) \cup F^{-1}(B_2) \subset F^{-1}(B_1) \cup F^{-1}(B_2)$. Now, Let $x \in F^{-1}(B_1) \cup F^{-1}(B_2)$. Then $x \in F^{-1}(B_1)$ or $x \in F^{-1}(B_2)$. If $x \in F^{-1}(B_1)$ then $\exists y_1 \in B_1$ such that $F(x, y_1) = 1$. Now $y_1 \in B_1 \cup B_2$ such that $F(x, y_1) = 1$. Therefore $x \in F^{-1}(B_1 \cup B_2)$. If $x \in F^{-1}(B_2)$ then $y_2 \in B_2$ such that $F(x, y_2) = 1$. Now $y_2 \in B_1 \cup B_2$ such that $F(x, y_2) = 1$. Therefore $x \in F^{-1}(B_1 \cup B_2)$. Hence $x \in F^{-1}(B_1) \cup F^{-1}(B_2) \Rightarrow x \in F^{-1}(B_1 \cup B_2)$. Therefore $F^{-1}(B_1) \cup F^{-1}(B_2) \Rightarrow x \in F^{-1}(B_1 \cup B_2)$. Therefore $F^{-1}(B_1) \cup F^{-1}(B_2) \Rightarrow x \in F^{-1}(B_1 \cup B_2)$. Therefore $F^{-1}(B_1) \cup F^{-1}(B_2) \Rightarrow x \in F^{-1}(B_1 \cup B_2)$. Therefore $F^{-1}(B_1) \cup F^{-1}(B_2) \Rightarrow x \in F^{-1}(B_1 \cup B_2)$. Therefore $F^{-1}(B_1) \cup F^{-1}(B_2) \Rightarrow x \in F^{-1}(B_1 \cup B_2)$. Therefore $F^{-1}(B_1) \cup F^{-1}(B_2) = F^{-1}(B_1) \cup F^{-1}(B_2)$. □

Theorem 2.19. Let F be a fuzzy map from X to Y. Let B_1 and B_2 be two non empty subsets of Y. Then $F^{-1}(B_1 \cap B_2) \subset F^{-1}(B_1) \cap F^{-1}(B_2)$.

Proof. Clearly $F^{-1}(B_1 \cap B_2) \subset X$ and $F^{-1}(B_1) \cap F^{-1}(B_2) \subset X$. Let $x \in F^{-1}(B_1 \cap B_2)$. Then $\exists y \in B_1 \cap B_2$ such that F(x, y) = 1. Since $y \in B_1 \cap B_2$, $y \in B_1$ and $y \in B_2$. Therefore $x \in F^{-1}(B_1)$ and $x \in F^{-1}(B_2)$. Hence $x \in F^{-1}(B_1) \cap F^{-1}(B_2)$. Now $x \in F^{-1}(B_1 \cap B_2) \Rightarrow x \in F^{-1}(B_1) \cap F^{-1}(B_2)$. Hence $F^{-1}(B_1 \cap B_2) \subset F^{-1}(B_1) \cap F^{-1}(B_2)$. \Box

Result 2.20. The equality does not hold in the above theorem

Example 2.21. Let $X = \{1, ..., 10\}$ and $Y = \{1, ..., 10\}$. Let F be a fuzzy map from X to Y such that F(5, 2) = 1 and F(5, 8) = 1 and when $(a, b) \neq (5, 2)$ and $(a, b) \neq (5, 8)$, F(a, b) = (a + b)/5 if $(a + b)/5 \in [0, 1]$ and 0 otherwise. Let $B_1 = \{1, 2, 3, 4, 5\}$ and $B_2 = \{5, 6, 7, 8, 9, 10\}$, $B_1 \cap B_2 = \{5\}$. $F^{-1}(B_1 \cap B_2) = \{0\}$, $F^{-1}(B_1) = \{5, 4, 3, 2, 1, 0\}$ and $F^{-1}(B_2) = \{0, 5\}$, $F^{-1}(B_1) \cap F^{-1}(B_2) = \{0, 5\}$. Therefore $F^{-1}(B_1 \cap B_2) \neq F^{-1}(B_1) \cap F^{-1}(B_2)$.

References

- [1] C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl., 24(1968), 182-190.
- [2] L.A.Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.
- [3] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzy Sequences in Metric Spaces, Int. Journal of Math. Analysis, 8(15)(2014), 699-706.
- [4] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzy Nets, Int. Journal of Math. Analysis, 8(35)(2014), 1715-1721.
- [5] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzification of Filters, Mathematical Sciences International Research Journal, 3(2)(2014), 669-671.
- [6] M.Muthukumari, A.Nagarajan and M.Murugalingam, Fuzzy Subsequences and Limit points, Int. Jr. of Mathematics Sciences & Applications 5(2)(2015), 227-232