

International Journal of Current Research in Science and Technology

On $(1,2)^*$ -g^{*}-continuous functions

Research Article

O. Ravi^{1*}, M. Jeyaraman², M. Sajan Joseph³ and R. Muthuraj⁴

- 1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India.
- 2 PG and Research Department of Mathematics, Raja Dorai Singam Govt.Arts College, Sivagangai, Tamil Nadu, India.
- 3 Department of Mathematics, Arul Anandar College, Karumathur, Madurai Dt, Tamil Nadu, India.
- 4 PG and Research Department of Mathematics, H. H. The Rajah's College, Pudukottai, Tamil Nadu, India

Abstract: The aim of this paper is to study $(1, 2)^*-g^*$ -continuous functions in bitopological spaces and investigate their relations with various generalized $(1, 2)^*$ -continuous functions. We also discuss some properties of $(1, 2)^*-g^*$ -continuous functions. We also introduce $(1, 2)^*-g^*$ -irresolute functions and study some of its applications. Finally using $(1, 2)^*-g^*$ -continuous functions we obtain a decomposition of $(1, 2)^*$ -continuity.

MSC: 54E55.

Keywords: (1,2)*-T_{1/2}-space, (1,2)*-α-space, (1,2)*-αg-irresolute function, (1,2)*-g*-continuous function, (1,2)*-g_α^{*}-continuous function, (1,2)*-g_α^{*}-continuous function.
© JS Publication.

1. Introduction

Several authors [1, 12, 13, 39] working in the field of general topology have shown more interest in studying the concepts of generalizations of continuous functions. A weak form of continuous functions called *g*-continuous functions were introduced by Balachandran et al [6]. Recently Sheik John [36] have introduced and studied another form of generalized continuous functions called ω -continuous functions respectively.

In this paper, we first study $(1,2)^*-g^*$ -continuous functions and investigate their relations with various generalized $(1,2)^*$ continuous functions. We also discuss some properties of $(1,2)^*-g^*$ -continuous functions. We also introduce $(1,2)^*-g^*$ irresolute functions and study some of its applications. Finally using $(1,2)^*-g^*$ -continuous functions we obtain a decomposition of $(1,2)^*$ -continuity.

2. Preliminaries

Throughout this paper, X, Y and Z denote bitopological spaces (X, τ_1 , τ_2), (Y, σ_1 , σ_2) and (Z, η_1 , η_2) respectively.

Definition 2.1. Let A be a subset of a bitopological space X. Then A is called $\tau_{1,2}$ -open [18] if $A = P \cup Q$, for some $P \in \tau_1$ and $Q \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. The family of all $\tau_{1,2}$ -open (resp. $\tau_{1,2}$ -closed) sets of X is denoted by $(1,2)^*$ -O(X) (resp. $(1,2)^*$ -C(X)).

^{*} E-mail: siingam@yahoo.com

Definition 2.2 ([18]). Let A be a subset of a bitopological space X. Then

- 1. the $\tau_{1,2}$ -interior of A, denoted by $\tau_{1,2}$ -int(A), is defined by $\cup \{ U : U \subseteq A \text{ and } U \text{ is } \tau_{1,2}$ -open};
- 2. the $\tau_{1,2}$ -closure of A, denoted by $\tau_{1,2}$ -cl(A), is defined by $\cap \{ U : A \subseteq U \text{ and } U \text{ is } \tau_{1,2}\text{-closed} \}$.

Remark 2.3 ([18]). Notice that $\tau_{1,2}$ -open subsets of X need not necessarily form a topology.

Definition 2.4. Let A be a subset of a bitopological space X. Then A is called

- 1. $(1,2)^*$ -semi-open set [18] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)).
- 2. $(1,2)^*$ -preopen set [18] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).
- 3. $(1,2)^*$ - α -open set [18] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))).
- 4. $(1,2)^*$ - β -open set [31] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A))).
- 5. $(1,2)^*$ -regular open set [29] if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

The $(1,2)^*$ -preclosure [26] (resp. $(1,2)^*$ -semi-closure [26], $(1,2)^*-\alpha$ -closure [26], $(1,2)^*-\beta$ -closure [31]) of a subset A of X, denoted by $(1,2)^*$ -pcl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*-\alpha$ cl(A), $(1,2)^*-\beta$ cl(A)) is defined to be the intersection of all $(1,2)^*$ -preclosed (resp. $(1,2)^*$ -semi-closed, $(1,2)^*-\alpha$ -closed, $(1,2)^*-\beta$ -closed) sets of X containing A. It is known that $(1,2)^*$ -pcl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*-\beta$ -closed) is a $(1,2)^*$ -preclosed (resp. $(1,2)^*$ -semi-closed, $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*$ -semi-closed, $(1,2)^*-\alpha$ -closed, $(1,2)^*-\beta$ -closed) sets of X containing A. It is known that $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*$ -semi-closed, $(1,2)^*-\alpha$ -closed, $(1,2)^*-\beta$ -closed) sets of X containing A. It is known that $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*-\alpha$ -closed, $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*-\alpha$ -closed, $(1,2)^*-\beta$ -closed) sets of X containing A. It is known that $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*-\alpha$ -closed, $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*-\alpha$ -closed, $(1,2)^*-\alpha$ -closed, $(1,2)^*-\beta$ -closed) sets of X containing A. It is known that $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*-\alpha$ -closed, $(1,2)^*-\alpha$ -closed, $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*-\beta$ -closed) (resp. $(1,2)^*-\alpha$ -closed) (res

Definition 2.5. Let A be a subset of a bitopological space X. Then A is called

- 1. a $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed) set [34] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -g-closed set is called $(1,2)^*$ -g-open set.
- 2. a $(1,2)^*$ -semi-generalized closed (briefly, $(1,2)^*$ -sg-closed) set [3] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ -sg-closed set is called $(1,2)^*$ -sg-open set.
- 3. a $(1,2)^*$ -generalized semi-closed (briefly, $(1,2)^*$ -gs-closed) set [3] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gs-closed set is called $(1,2)^*$ -gs-open set.
- 4. an $(1,2)^*$ - α -generalized closed (briefly, $(1,2)^*$ - α g-closed) set [15] if $(1,2)^*$ - α cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ - α g-closed set is called $(1,2)^*$ - α g-open set.
- 5. $a (1,2)^*$ -generalized semi-preclosed (briefly, $(1,2)^*$ -gsp-closed) set [15] if $(1,2)^*$ - $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gsp-closed set is called $(1,2)^*$ -gsp-open set.
- 6. $(1,2)^*$ - g^* -closed set [28] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -g-open in X. The complement of $(1,2)^*$ - g^* -closed set is called $(1,2)^*$ - g^* -open.
- 7. $(1,2)^*-g^*_{\alpha}$ -closed set [28] if $(1,2)^*-\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*-g$ -open in X. The complement of $(1,2)^*-g^*_{\alpha}$ -closed set is called $(1,2)^*-g^*_{\alpha}$ -open.

Remark 2.6. The collection of all $(1,2)^*$ - g^* -closed (resp. $(1,2)^*$ - g^*_{α} -closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -G-c

We denote the power set of X by P(X).

Definition 2.7. A bitopological space X is called:

- 1. $(1,2)^*$ - $T_{1/2}$ -space [32] if every $(1,2)^*$ -g-closed set in it is $\tau_{1,2}$ -closed.
- 2. $(1,2)^*$ - T_g^* -space [28] if every $(1,2)^*$ - g^* -closed set in it is $\tau_{1,2}$ -closed.
- 3. $(1,2)^*$ - $_{\alpha}T_b$ -space [31] if every $(1,2)^*$ - αg -closed set in it is $\tau_{1,2}$ -closed.

Remark 2.8. In a bitopological space, the following holds:

- 1. Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -g^{*}-closed set but not conversely.
- 2. Every $(1,2)^*$ - g^* -closed set is $(1,2)^*$ - g^*_{α} -closed set but not conversely.
- 3. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ -g-closed set but not conversely.
- 4. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ - α g-closed set but not conversely.
- 5. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ -gs-closed set but not conversely.
- 6. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ -gsp-closed set but not conversely.

Definition 2.9. A function $f : X \to Y$ is called:

- 1. $(1,2)^*$ -g-continuous [16] if $f^{-1}(V)$ is a $(1,2)^*$ -g-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 2. $(1,2)^*$ - αg -continuous [31] if $f^{-1}(V)$ is an $(1,2)^*$ - αg -closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 3. $(1,2)^*$ -gs-continuous [31] if $f^{-1}(V)$ is a $(1,2)^*$ -gs-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 4. $(1,2)^*$ -gsp-continuous [31] if $f^{-1}(V)$ is a $(1,2)^*$ -gsp-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 5. $(1,2)^*$ -sg-continuous [34] if $f^{-1}(V)$ is a $(1,2)^*$ -sg-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 6. $(1,2)^*$ -semi-continuous [26] if $f^{-1}(V)$ is a $(1,2)^*$ -semi-open set in X for every $\sigma_{1,2}$ -open set V of Y.
- 7. $(1,2)^*$ - α -continuous [26] if $f^{-1}(V)$ is an $(1,2)^*$ - α -closed set in X for every $\sigma_{1,2}$ -closed set V of Y.

Definition 2.10. A function $f : X \to Y$ is called:

- 1. $(1,2)^*$ -g-irresolute [16] if the inverse image of every $(1,2)^*$ -g-closed set in Y is $(1,2)^*$ -g-closed in X.
- (1,2)*-sg-irresolute [31] if the inverse image of every (1,2)*-sg-closed (resp. (1,2)*-sg-open) set in Y is (1,2)*-sg-closed (resp. (1,2)*-sg-open) in X.

3. $(1,2)^*$ -g^{*}-continuous Functions

We introduce the following definitions:

Definition 3.1. A function $f : X \to Y$ is called:

- 1. $(1,2)^*$ -g^{*}-continuous if the inverse image of every $\sigma_{1,2}$ -closed set in Y is $(1,2)^*$ -g^{*}-closed set in X.
- 2. $(1,2)^*-g^*_{\alpha}$ -continuous if $f^{-1}(V)$ is an $(1,2)^*-g^*_{\alpha}$ -closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 3. strongly $(1,2)^*$ - g^* -continuous if the inverse image of every $(1,2)^*$ - g^* -open set in Y is $\tau_{1,2}$ -open in X.

Example 3.2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{c\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{c\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^*C(X) = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ - g^* -continuous.

Proposition 3.3. Every $(1,2)^*$ -continuous function is $(1,2)^*$ -g*-continuous but not conversely.

Example 3.4. The function f in Example 3.2 is $(1,2)^*$ - g^* -continuous but not $(1,2)^*$ -continuous, since $f^{-1}(\{b, c\}) = \{b, c\}$ is not $\tau_{1,2}$ -closed in X.

Proposition 3.5. Every $(1,2)^*$ - g^* -continuous function is $(1,2)^*$ - g^*_{α} -continuous but not conversely.

Example 3.6. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^*C(X) = \{\phi, \{a, c\}, X\}$ and $(1, 2)^*$ - $G^*C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - g^* -continuous but not $(1, 2)^*$ - g^* -continuous, since $f^{-1}(\{a\}) = \{a\}$ is not $(1, 2)^*$ - g^* -closed in X.

Proposition 3.7. Every $(1,2)^*$ - g^* -continuous function is $(1,2)^*$ -g-continuous but not conversely.

Example 3.8. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{c\}, Y\}$. Then the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^*C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1, 2)^*$ -GC(X) = P(X). Let $f : X \to Y$ be the identity function. Then f is $(1, 2)^*$ -g-continuous but not $(1, 2)^*$ -g*-continuous, since $f^{-1}(\{a, b\}) = \{a, b\}$ is not $(1, 2)^*$ -g*-closed in X.

Proposition 3.9. Every $(1,2)^*$ - g^* -continuous function is $(1,2)^*$ - αg -continuous but not conversely.

Example 3.10. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Then the sets in $\{\phi, \{b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^*C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1, 2)^*$ - $\alpha GC(X) = P(X)$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - αg -continuous but not $(1, 2)^*$ - g^* -continuous, since $f^{-1}(\{a, c\}) = \{a, c\}$ is not $(1, 2)^*$ - g^* -closed in X.

Proposition 3.11. Every $(1,2)^*$ -g^{*}-continuous function is $(1,2)^*$ -g^{*}-continuous but not conversely.

Example 3.12. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the

sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^*C(X) = \{\phi, \{b, c\}, X\}$ and $(1,2)^*$ - $GSC(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ -gs-continuous but not $(1,2)^*$ -g*-continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1,2)^*$ -g*-closed in X.

Proposition 3.13. Every $(1,2)^*$ -g^{*}-continuous function is $(1,2)^*$ -gsp-continuous but not conversely.

Example 3.14. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^*C(X) = \{\phi, \{a, c\}, X\}$ and $(1, 2)^*$ - $GSPC(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ -gsp-continuous but not $(1, 2)^*$ -g*-continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1, 2)^*$ -g*-closed in X.

Remark 3.15. The following examples show that $(1,2)^*$ - g^* -continuity is independent of $(1,2)^*$ - α -continuity and $(1,2)^*$ -semi-continuity.

Example 3.16. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^*C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $\alpha C(X) = (1,2)^*$ - $SC(X) = \{\phi, \{c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ - g^* -continuous but it is neither $(1,2)^*$ - α -continuous nor $(1,2)^*$ -semi-continuous, since $f^{-1}(\{b, c\}) = \{b, c\}$ is neither $(1,2)^*$ - α -closed nor $(1,2)^*$ -semi-closed in X.

Example 3.17. In Example 3.12, we have $(1,2)^*$ - $G^*C(X) = \{\phi, \{b, c\}, X\}$ and $(1,2)^*$ - $\alpha C(X) = (1,2)^*$ - $SC(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is both $(1,2)^*$ - α -continuous and $(1,2)^*$ -semi-continuous but it is not $(1,2)^*$ - g^* -continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1,2)^*$ - g^* -closed in X.

Proposition 3.18. A function $f: X \to Y$ is $(1,2)^* \cdot g^* \cdot continuous$ if and only if $f^{-1}(U)$ is $(1,2)^* \cdot g^* \cdot open$ in X for every $\sigma_{1,2} \cdot open$ set U in Y.

Proof. Let $f: X \to Y$ be $(1,2)^*-g^*$ -continuous and U be an $\sigma_{1,2}$ -open set in Y. Then U^c is $\sigma_{1,2}$ -closed in Y and since f is $(1,2)^*-g^*$ -continuous, $f^{-1}(U^c)$ is $(1,2)^*-g^*$ -closed in X. But $f^{-1}(U^c) = (f^{-1}(U))^c$ and so $f^{-1}(U)$ is $(1,2)^*-g^*$ -open in X.

Conversely, assume that $f^{-1}(U)$ is $(1,2)^* - g^*$ -open in X for each $\sigma_{1,2}$ -open set U in Y. Let F be a $\sigma_{1,2}$ -closed set in Y. Then F^c is $\sigma_{1,2}$ -open in Y and by assumption, $f^{-1}(F^c)$ is $(1,2)^* - g^*$ -open in X. Since $f^{-1}(F^c) = (f^{-1}(F))^c$, we have $f^{-1}(F)$ is $(1,2)^* - g^*$ -closed in X and so f is $(1,2)^* - g^*$ -continuous.

Remark 3.19. The composition of two $(1,2)^*$ - g^* -continuous functions need not be a $(1,2)^*$ - g^* -continuous function as shown in the following example.

Example 3.20. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $Z = \{a, b, c\}, \eta_1 = \{\phi, Z\}$ and $\eta_2 = \{\phi, \{b\}, Z\}$. Then the sets in $\{\phi, \{b\}, Z\}$ are called $\eta_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, Z\}$ are called $\eta_{1,2}$ -closed. Let $f : X \to Y$ and $g : Y \to Z$ be the identity functions. Then f and g are $(1,2)^*$ -g^{*}-continuous but g o f : $X \to Z$ is not $(1,2)^*$ -g^{*}-continuous, since for the set $V = \{a, c\}$ is $\eta_{1,2}$ -closed in Z, (g o $f)^{-1}(V) = f^{-1}(g^{-1}(V)) = f^{-1}(g^{-1}(\{a, c\})) = f^{-1}(\{a, c\}) = \{a, c\}$ is not $(1,2)^*$ -g^{*}-closed in X.

Proposition 3.21. Let X and Z be bitopological spaces and Y be a $(1,2)^*$ - T_g^* -space. Then the composition g of $: X \to Z$ of the $(1,2)^*$ - g^* -continuous functions $f: X \to Y$ and $g: Y \to Z$ is $(1,2)^*$ - g^* -continuous.

Proof. Let F be any $\eta_{1,2}$ -closed set of Z. Then $g^{-1}(F)$ is $(1,2)^* - g^*$ -closed in Y, since g is $(1,2)^* - g^*$ -continuous. Since Y is a $(1,2)^* - T_g^*$ -space, $g^{-1}(F)$ is $\sigma_{1,2}$ -closed in Y. Since f is $(1,2)^* - g^*$ -continuous, $f^{-1}(g^{-1}(F))$ is $(1,2)^* - g^*$ -closed in X. But $f^{-1}(g^{-1}(F)) = (g \ o \ f)^{-1}(F)$ and so $g \ o \ f$ is $(1,2)^* - g^*$ -continuous.

Proposition 3.22. Let X and Z be bitopological spaces and Y be a $(1,2)^* \cdot T_{1/2}$ -space (resp. $(1,2)^* \cdot T_b$ -space, $(1,2)^* \cdot \alpha T_b$ -space). Then the composition g of $f: X \to Z$ of the $(1,2)^* \cdot g^*$ -continuous function $f: X \to Y$ and the $(1,2)^* \cdot g$ -continuous (resp. $(1,2)^* \cdot g^*$ -continuous) function $g: Y \to Z$ is $(1,2)^* \cdot g^*$ -continuous.

Proof. Similar to Proposition 3.21.

Proposition 3.23. If $f: X \to Y$ is $(1,2)^* - g^*$ -continuous and $g: Y \to Z$ is $(1,2)^*$ -continuous, then their composition g of $f: X \to Z$ is $(1,2)^* - g^*$ -continuous.

Proof. Let F be any $\eta_{1,2}$ -closed set in Z. Since $g: Y \to Z$ is $(1,2)^*$ -continuous, $g^{-1}(F)$ is $\sigma_{1,2}$ -closed in Y. Since $f: X \to Y$ is $(1,2)^*$ - g^* -continuous, $f^{-1}(g^{-1}(F)) = (g \ o \ f)^{-1}(F)$ is $(1,2)^*$ - g^* -closed in X and so $g \ o \ f$ is $(1,2)^*$ - g^* -continuous.

Proposition 3.24. Let A be $(1,2)^*$ -g^{*}-closed in X. If $f: X \to Y$ is $(1,2)^*$ -g-irresolute and $(1,2)^*$ -closed, then f(A) is $(1,2)^*$ -g^{*}-closed in Y.

Proof. Let U be any $(1,2)^*$ -g-open in Y such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$ and by hypothesis, $\tau_{1,2}$ -cl $(A) \subseteq f^{-1}(U)$. Thus $f(\tau_{1,2}$ -cl $(A)) \subseteq U$ and $f(\tau_{1,2}$ -cl(A)) is a $\sigma_{1,2}$ -closed set. Now, $\sigma_{1,2}$ -cl $(f(A)) \subseteq \sigma_{1,2}$ -cl $(f(\tau_{1,2}$ -cl $(A))) = f(\tau_{1,2}$ -cl $(A)) \subseteq U$. i.e., $\sigma_{1,2}$ -cl $(f(A)) \subseteq U$ and so f(A) is $(1,2)^*$ -g*-closed.

4. $(1,2)^*$ -g^{*}-irresolute Functions

We introduce the following definition.

Definition 4.1. A function $f: X \to Y$ is called an $(1,2)^*$ - g^* -irresolute if the inverse image of every $(1,2)^*$ - g^* -closed set in Y is $(1,2)^*$ - g^* -closed in X.

Remark 4.2. The following examples show that the notions of $(1, 2)^*$ -sg-irresolute functions and $(1, 2)^*$ -g*-irresolute functions are independent.

Example 4.3. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, \{a, b\}, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^*C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $SGC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $(1,2)^*$ - $G^*C(Y) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}$ and $(1,2)^*$ - $SGC(Y) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, Y\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ - g^* -irresolute but it is not $(1,2)^*$ -sg-irresolute, since $f^{-1}(\{b\}) = \{b\}$ is not $(1,2)^*$ -sg-closed in X.

Example 4.4. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{b\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{b\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^*C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1, 2)^*$ - $SGC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1, 2)^*$ - $SGC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$, $(1, 2)^*$ - $G^*C(Y) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$ and $(1, 2)^*$ - $SGC(Y) = \{\phi, \{a\}, \{c\}, \{a, c\}, Y\}$. Let $f : X \to Y$ be the identity function. Then f is $(1, 2)^*$ -sg-irresolute but it is not $(1, 2)^*$ -g*-irresolute, since $f^{-1}(\{a\}) = \{a\}$ is not $(1, 2)^*$ -g*-closed in X.

Proposition 4.5. A function $f: X \to Y$ is $(1,2)^* \cdot g^* \cdot irresolute$ if and only if the inverse of every $(1,2)^* \cdot g^* \cdot open$ set in Y is $(1,2)^* \cdot g^* \cdot open$ in X.

Proof. Similar to Proposition 3.18.

Proposition 4.6. If a function $f: X \to Y$ is $(1,2)^* \cdot g^*$ -irresolute then it is $(1,2)^* \cdot g^*$ -continuous but not conversely.

Example 4.7. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^*C(X) = \{\phi, \{a, c\}, X\}$ and $(1, 2)^*$ - $G^*C(Y) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}$. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ - g^* -continuous but it is not $(1, 2)^*$ - g^* -irresolute, since $f^{-1}(\{a\}) = \{a\}$ is not $(1, 2)^*$ - g^* -open in X.

Proposition 4.8. Let X be any bitopological space, Y be a $(1, 2)^*$ - T_g^* -space and $f: X \to Y$ be a function. Then the following are equivalent:

- 1. f is $(1,2)^*$ - g^* -irresolute.
- 2. f is $(1,2)^*$ -g^{*}-continuous.

Proof.

(1) \Rightarrow (2) Follows from Proposition 4.6.

(2) \Rightarrow (1) Let F be a (1,2)*-g*-closed set in Y. Since Y is a (1,2)*- T_g^* -space, F is a $\sigma_{1,2}$ -closed set in Y and by hypothesis, f⁻¹(F) is (1,2)*-g*-closed in X. Therefore f is (1,2)*-g*-irresolute.

Definition 4.9. A function $f: X \to Y$ is called pre- $(1, 2)^*$ -g-open if f(U) is $(1, 2)^*$ -g-open in Y, for each $(1, 2)^*$ -g-open set U in X.

Proposition 4.10. If $f: X \to Y$ is bijective pre- $(1, 2)^*$ -g-open and $(1, 2)^*$ -g^{*}-continuous then f is $(1, 2)^*$ -g^{*}-irresolute.

Proof. Let A be $(1,2)^*-g^*$ -closed set in Y. Let U be any $(1,2)^*-g$ -open set in X such that $f^{-1}(A) \subseteq U$. Then $A \subseteq f(U)$. Since A is $(1,2)^*-g^*$ -closed and f(U) is $(1,2)^*-g$ -open in Y, $\sigma_{1,2}$ -cl(A) $\subseteq f(U)$ holds and hence $f^{-1}(\sigma_{1,2}$ -cl(A)) $\subseteq U$. Since f is $(1,2)^*-g^*$ -continuous and $\sigma_{1,2}$ -cl(A) is $\sigma_{1,2}$ -closed in Y, $f^{-1}(\sigma_{1,2}$ -cl(A)) is $(1,2)^*-g^*$ -closed and hence $\tau_{1,2}$ -cl($f^{-1}(\sigma_{1,2}$ -cl(A))) $\subseteq U$. Therefore, $f^{-1}(A)$ is $(1,2)^*-g^*$ -closed in X and hence f is $(1,2)^*-g^*$ -irresolute.

The following examples show that no assumption of Proposition 4.10 can be removed.

Example 4.11. The identity function defined in Example 4.7 is $(1, 2)^*$ -g^{*}-continuous and bijective but not pre- $(1, 2)^*$ -g-open and so f is not $(1, 2)^*$ -g^{*}-irresolute.

Example 4.12. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^*C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $GC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $GC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $GC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$, $(1,2)^*$ - $G^*C(Y) = \{\phi, \{a\}, \{b, c\}, Y\}$ and $(1,2)^*$ -GC(Y) = P(Y). Let $f: X \to Y$ be the identity function. Then f is bijective and pre- $(1,2)^*$ -g-open but not $(1,2)^*$ -g*-continuous and so f is not $(1,2)^*$ -g*-irresolute, since $f^{-1}(\{a\}) = \{a\}$ is not $(1,2)^*$ -g*-closed in X.

Proposition 4.13. If $f: X \to Y$ is bijective $(1,2)^*$ -closed and $(1,2)^*$ -g-irresolute then the inverse function $f^{-1}: Y \to X$ is $(1,2)^*$ -g^{*}-irresolute.

Proof. Let A be $(1,2)^* - g^*$ -closed in X. Let $(f^{-1})^{-1}(A) = f(A) \subseteq U$ where U is $(1,2)^* - g$ -open in Y. Then $A \subseteq f^{-1}(U)$ holds. Since $f^{-1}(U)$ is $(1,2)^* - g$ -open in X and A is $(1,2)^* - g^*$ -closed in X, $\tau_{1,2}$ -cl $(A) \subseteq f^{-1}(U)$ and hence $f(\tau_{1,2}$ -cl $(A)) \subseteq U$. Since f is $(1,2)^*$ -closed and $\tau_{1,2}$ -cl(A) is closed in X, $f(\tau_{1,2}$ -cl(A)) is $\sigma_{1,2}$ -closed in Y and so $f(\tau_{1,2}$ -cl(A)) is $(1,2)^* - g^*$ -closed in Y. Therefore $\sigma_{1,2}$ -cl $(f(\tau_{1,2}$ -cl $(A))) \subseteq U$ and hence $\sigma_{1,2}$ -cl $(f(A)) \subseteq U$. Thus f(A) is $(1,2)^* - g^*$ -closed in Y and so f^{-1} is $(1,2)^* - g^*$ -irresolute.

5. Applications

To obtain a decomposition of $(1, 2)^*$ -continuity, we introduce the notion of $(1, 2)^*$ -glc^{*}-continuous function in bitopological spaces and prove that a function is $(1, 2)^*$ -continuous if and only if it is both $(1, 2)^*$ -g^{*}-continuous and $(1, 2)^*$ -glc^{*}-continuous.

Definition 5.1. A subset A of a bitopological space X is called $(1,2)^*$ -glc^{*}-set if $A = M \cap N$, where M is $(1,2)^*$ -g-open and N is $\tau_{1,2}$ -closed in X.

The family of all $(1,2)^*$ -glc*-sets in a space X is denoted by $(1,2)^*$ -glc*(X).

Example 5.2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{c\}, X\}$. Then the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a\}$ is $(1, 2)^*$ -glc^{*}-set in X.

Remark 5.3. Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -glc^{*}-set but not conversely.

Example 5.4. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a, b\}$ is $(1, 2)^*$ -glc*-set but not $\tau_{1,2}$ -closed in X.

Remark 5.5. $(1,2)^*$ - g^* -closed sets and $(1,2)^*$ - glc^* -sets are independent of each other.

Example 5.6. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{b, c\}$ is a $(1,2)^*$ -g*-closed set but not $(1,2)^*$ -glc*-set in X.

Example 5.7. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $\{a, b\}$ is an $(1, 2)^*$ -glc*-set but not $(1, 2)^*$ -g*-closed set in X.

Proposition 5.8. Let X be a bitopological space. Then a subset A of X is $\tau_{1,2}$ -closed if and only if it is both $(1,2)^*$ -g^{*}-closed and $(1,2)^*$ -glc^{*}-set.

Proof. Necessity is trivial. To prove the sufficiency, assume that A is both $(1,2)^*-g^*$ -closed and $(1,2)^*-glc^*$ -set. Then A = M \cap N, where M is $(1,2)^*-g$ -open and N is $\tau_{1,2}$ -closed in X. Therefore, A \subseteq M and A \subseteq N and so by hypothesis, $\tau_{1,2}$ -cl(A) \subseteq M and $\tau_{1,2}$ -cl(A) \subseteq N. Thus $\tau_{1,2}$ -cl(A) \subseteq M \cap N = A and hence $\tau_{1,2}$ -cl(A) = A i.e., A is $\tau_{1,2}$ -closed in X.

We introduce the following definition.

Definition 5.9. A function $f: X \to Y$ is said to be $(1,2)^*$ -glc^{*}-continuous if for each $\sigma_{1,2}$ -closed set V of Y, $f^{-1}(V)$ is an $(1,2)^*$ -glc^{*}-set in X.

Example 5.10. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f : X \to Y$ be the identity function. Then f is $(1,2)^*$ -glc^{*}-continuous function.

Remark 5.11. From the definitions it is clear that every $(1,2)^*$ -continuous function is $(1,2)^*$ -glc^{*}-continuous but not conversely.

Example 5.12. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{b\}, Y\}$ and $\sigma_2 = \{\phi, \{a, c\}, Y\}$. Then the sets in $\{\phi, \{b\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ -glc*-continuous function but not $(1, 2)^*$ -continuous. Since for the $\sigma_{1,2}$ -closed set $\{b\}$ in $Y, f^{-1}(\{b\}) = \{b\}$, which is not $\tau_{1,2}$ -closed in X.

Remark 5.13. $(1,2)^*$ -g^{*}-continuity and $(1,2)^*$ -glc^{*}-continuity are independent of each other.

Example 5.14. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f : X \to Y$ be the identity function. Then f is $(1, 2)^*$ -g^{*}-continuous function but not $(1, 2)^*$ -glc^{*}-continuous.

Example 5.15. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ be the identity function. Then f is $(1, 2)^*$ -glc^{*}-continuous function but not $(1, 2)^*$ -g^{*}-continuous.

We have the following decomposition for $(1, 2)^*$ -continuity.

Theorem 5.16. A function $f: X \to Y$ is $(1, 2)^*$ -continuous if and only if it is both $(1, 2)^*$ - g^* -continuous and $(1, 2)^*$ - glc^* -continuous.

Proof. Assume that f is $(1,2)^*$ -continuous. Then by Proposition 3.3 and Remark 5.11, f is both $(1,2)^*$ -g*-continuous and $(1,2)^*$ -glc*-continuous.

Conversely, assume that f is both $(1,2)^*-g^*$ -continuous and $(1,2)^*-glc^*$ -continuous. Let V be a $\sigma_{1,2}$ -closed subset of Y. Then $f^{-1}(V)$ is both $(1,2)^*-g^*$ -closed set and $(1,2)^*-glc^*$ -set. By Proposition 5.8, $f^{-1}(V)$ is a $\tau_{1,2}$ -closed set in X and so f is $(1,2)^*$ -continuous.

References

- M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] J.Antony Rex Rodrigo, O.Ravi, A.Pandi and C.M.Santhana, On (1,2)*-s-normal spaces and pre-(1,2)*-gs-closed functions, International Journal of Algorithms, Computing and Mathematics, 4(1)(2011), 29-42.
- [4] F.G.Arenas, J.Dontchev and M.Ganster, On λ-sets and dual of generalized continuity, Questions Answers Gen. Topology, 15 (1997), 3-13.
- [5] S.P.Arya and T.M.Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- [6] K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math., 12(1991), 5-13.
- [7] P.Bhattacharyya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.

- [8] D.E.Cameron, Topology atlas, http://gozips. uakron. deu/.
- [9] J.Cao, M.Ganster and I.Reilly, On sg-closed sets and gα-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 20(1999), 1-5.
- [10] J.Cao, M.Ganster and I.Reilly, Submaximality, extremal disconnectedness and generalized closed sets, Houston J. Math., 24(1998), 681-688.
- [11] R.Devi, K.Bhuvaneswari and H.Maki, Weak forms of $g\rho$ -closed sets, where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$ and digital plane, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 25(2004), 37-54.
- [12] R.Devi, K.Balachandran and H.Maki, On generalized α-continuous maps and α-generalized continuous maps, Far East J. Math. Sci., Special Volume, Part I(1997), 1-15.
- [13] J.Dontchev and M.Ganster, On δ-generalized closed sets and T_{3/4}-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17 (1996), 15-31.
- [14] W.Dunham, $T_{1/2}$ -spaces, Kyungpook Math. J., 17(1977), 161-169.
- [15] Z.Duszynski, M.Jeyaraman, M.S.Joseph, O.Ravi and M.L.Thivagar, A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [16] K.Kayathri, O.Ravi, M.L.Thivagar and M.Joseph Israel, Decompositions of (1,2)*-rg-continuous maps in bitopological spaces, Antarctica J. Math., 6(1)(2009), 13-23.
- [17] J.C.Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- [18] M.Lellis Thivagar, O.Ravi and M.E.Abd El-Monsef, Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1)(2008), 17-25.
- [19] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [20] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [21] N.Levine, Some remarks on the closure operator in topological spaces, Amer. Math. Monthly, 70(5)(1963), 553.
- [22] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [23] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [24] M.Rajamani and K.Viswanathan, On ags-closed sets in topological spaces, Acta Ciencia Indica, XXXM(3)(2004), 21-25.
- [25] C.Rajan, Further study of new bitopological generalized continuous functions, Ph. D Thesis, Madurai Kamaraj University, Madurai, (2014).
- [26] O.Ravi, M.L.Thivagar and E.Hatir, Decomposition of (1,2)*-continuity and (1,2)*-α-continuity, Miskolc Mathematical Notes., 10(2)(2009), 163-171.
- [27] O.Ravi and M.L.Thivagar, Remarks on λ -irresolute functions via $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
- [28] O.Ravi, M.Jeyaraman, M.Sajan Joseph and R.Muthuraj, $(1, 2)^*$ - g^* -closed sets, submitted.
- [29] O.Ravi, E.Ekici and M.Lellis Thivagar, On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings, Kochi J. Math., 3(2008), 181-189.
- [30] O.Ravi, K.Kayathri, M.L.Thivagar and M.Joseph Israel, Mildly (1,2)*-normal spaces and some bitopological functions, Mathematica Bohemica, 135(1)(2010), 1-15.
- [31] O.Ravi, A.Pandi and R.Latha, Contra-pre-(1,2)*-semi-continuous functions, Bessel Journal of Mathematics (To appear).
- [32] O.Ravi, S.Pious Missier and T.Salai Parkunan, On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11)(2010), 543-557.

- [33] O.Ravi, M.L.Thivagar and E.Ekici, Decomposition of (1,2)*-continuity and complete (1,2)*-continuity in bitopological spaces, Analele Universitatii Din Oradea. Fasc. Matematica Tom XV (2008), 29-37.
- [34] O.Ravi, M.L.Thivagar and Jinjinli, Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2)(2011), 177-187.
- [35] O.Ravi, A.Pandi, S.Pious Missier and T.Salai Parkunan, Remarks on bitopological (1,2)*-rω-Homeomorphisms, International Journal of Mathematical Archive, 2(4)(2011), 465-475.
- [36] M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September, (2002).
- [37] M.K.R.S.Veera Kumar, $g^{\#}$ -closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. (Math.)., 24(2003), 1-13.
- [38] M.K.R.S.Veera Kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 21(2000), 1-19.
- [39] M.K.R.S.Veera Kumar, *ĝ-closed sets in topological spaces*, Bull. Allah. Math. Soc., 18(2003), 99-112.