

International Journal of Current Research in Science and Technology

On $(1,2)^{\star}$ -g^{*}-continuous functions

Research Article

O. Ravi¹^{*}, M. Jeyaraman², M. Sajan Joseph³ and R. Muthuraj⁴

- 1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India.
- 2 PG and Research Department of Mathematics, Raja Dorai Singam Govt.Arts College, Sivagangai, Tamil Nadu, India.
- 3 Department of Mathematics, Arul Anandar College, Karumathur, Madurai Dt, Tamil Nadu, India.
- 4 PG and Research Department of Mathematics, H. H. The Rajah's College, Pudukottai, Tamil Nadu, India

Abstract: The aim of this paper is to study $(1,2)^*$ -g^{*}-continuous functions in bitopological spaces and investigate their relations with various generalized $(1,2)^*$ -continuous functions. We also discuss some properties of $(1,2)^*$ -g^{*}-continuous functions. We also introduce $(1,2)^*$ -g^{*}-irresolute functions and study some of its applications. Finally using $(1,2)^*$ -g^{*}-continuous functions we obtain a decomposition of $(1, 2)$ ^{*}-continuity.

MSC: 54E55.

Keywords: $(1,2)^{\star}$ -T_{1/2}-space, $(1,2)^{\star}$ - α -space, $(1,2)^{\star}$ - α g-irresolute function, $(1,2)^{\star}$ - g^{\star} -continuous function, $(1,2)^{\star}$ - g^{\star}_{α} -continuous function, $(1, 2)^*$ -gsp-continuous function. c JS Publication.

1. Introduction

Several authors [\[1,](#page-8-0) [12,](#page-9-0) [13,](#page-9-1) [39\]](#page-10-0) working in the field of general topology have shown more interest in studying the concepts of generalizations of continuous functions. A weak form of continuous functions called g-continuous functions were introduced by Balachandran et al [\[6\]](#page-8-1). Recently Sheik John [\[36\]](#page-10-1) have introduced and studied another form of generalized continuous functions called ω -continuous functions respectively.

In this paper, we first study $(1,2)^*$ -g^{*}-continuous functions and investigate their relations with various generalized $(1,2)^*$ continuous functions. We also discuss some properties of $(1,2)^*$ -g^{*}-continuous functions. We also introduce $(1,2)^*$ -g^{*}irresolute functions and study some of its applications. Finally using $(1,2)^*$ - g^* -continuous functions we obtain a decomposition of $(1,2)^*$ -continuity.

2. Preliminaries

Throughout this paper, X, Y and Z denote bitopological spaces (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) respectively.

Definition 2.1. Let A be a subset of a bitopological space X. Then A is called $\tau_{1,2}$ -open [\[18\]](#page-9-2) if $A = P \cup Q$, for some $P \in$ τ_1 and $Q \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. The family of all $\tau_{1,2}$ -open (resp. $\tau_{1,2}$ -closed) sets of *X* is denoted by $(1, 2)^*$ - $O(X)$ (resp. $(1, 2)^*$ - $C(X)$).

[∗] *E-mail: siingam@yahoo.com*

Definition 2.2 ([\[18\]](#page-9-2)). *Let A be a subset of a bitopological space X. Then*

- *1. the* $\tau_{1,2}$ *-interior of* A, denoted by $\tau_{1,2}$ *-int(A), is defined by* $\cup \{ U : U \subseteq A \text{ and } U \text{ is } \tau_{1,2}$ *-open*}*;*
- 2. the $\tau_{1,2}$ -closure of A, denoted by $\tau_{1,2}$ -cl(A), is defined by $\cap \{U : A \subseteq U \text{ and } U \text{ is } \tau_{1,2}$ -closed $\}$.

Remark 2.3 ([\[18\]](#page-9-2)). *Notice that* $\tau_{1,2}$ *-open subsets of X need not necessarily form a topology.*

Definition 2.4. *Let A be a subset of a bitopological space X. Then A is called*

- *1.* $(1, 2)^*$ -semi-open set [\[18\]](#page-9-2) if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)).
- 2. $(1,2)^*$ -preopen set [\[18\]](#page-9-2)^{*if*} $A \subseteq \tau_{1,2}$ - $int(\tau_{1,2} cl(A))$.
- *3.* $(1, 2)$ ^{*∗*}*-α-open set* [\[18\]](#page-9-2) *if A* ⊆ $τ_{1,2}$ *-int*($τ_{1,2}$ *-cl*($τ_{1,2}$ *-int*(*A*))).
- *4.* $(1, 2)^*$ *-*β*-open set* [\[31\]](#page-9-3) *if* $A \subseteq \tau_{1,2}$ *-cl*($\tau_{1,2}$ *-int*($\tau_{1,2}$ *-cl*(A))).
- *5.* $(1,2)^*$ -regular open set [\[29\]](#page-9-4) if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

The $(1,2)^*$ -preclosure [\[26\]](#page-9-5) (resp. $(1,2)^*$ -semi-closure [26], $(1,2)^*$ - α -closure [26], $(1,2)^*$ - β -closure [\[31\]](#page-9-3)) of a subset A of X, denoted by $(1,2)^*$ -pcl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*$ - α cl(A), $(1,2)^*$ - β cl(A)) is defined to be the intersection of all $(1,2)^*$ $preclosed (resp. (1, 2)*-semi-closed, (1, 2)*-α-closed, (1, 2)*-β-closed) sets of X containing A. It is known that (1, 2)*-pd(A)$ $(r \exp. (1, 2)^* \cdot \text{scl}(A), (1, 2)^* \cdot \text{ccl}(A), (1, 2)^* \cdot \text{ccl}(A))$ is a $(1, 2)^* \cdot \text{preclosed}$ $(r \exp. (1, 2)^* \cdot \text{semiclosed}, (1, 2)^* \cdot \text{cclosed}, (1, 2)^* \cdot \text{cclased}$ β*-closed) set.*

Definition 2.5. *Let A be a subset of a bitopological space X. Then A is called*

- 1. a $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed) set [\[34\]](#page-10-2) if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in *X.* The complement of $(1,2)^*$ -g-closed set is called $(1,2)^*$ -g-open set.
- 2. a $(1,2)^*$ -semi-generalized closed (briefly, $(1,2)^*$ -sg-closed) set [\[3\]](#page-8-2) if $(1,2)^*$ -scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ -sg-closed set is called $(1,2)^*$ -sg-open set.
- 3. a $(1,2)^*$ -generalized semi-closed (briefly, $(1,2)^*$ -gs-closed) set [\[3\]](#page-8-2) if $(1,2)^*$ -scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gs-closed set is called $(1,2)^*$ -gs-open set.
- \mathcal{A} *. an* $(1,2)^*$ - α -generalized closed (briefly, $(1,2)^*$ - α g-closed) set [\[15\]](#page-9-6) if $(1,2)^*$ - α cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^{\star}$ - α g-closed set is called $(1,2)^{\star}$ - α g-open set.
- *5.* a $(1,2)^*$ -generalized semi-preclosed (briefly, $(1,2)^*$ -gsp-closed) set [\[15\]](#page-9-6) if $(1,2)^*$ - β cl(A) $\subseteq U$ whenever $A \subseteq U$ and U *is* $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gsp-closed set is called $(1,2)^*$ -gsp-open set.
- *6.* $(1,2)^{*}$ -g^{*}-closed set [\[28\]](#page-9-7) if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^{*}$ -g-open in X. The complement of $(1,2)^{*}$ g^* -closed set is called $(1,2)^*$ - g^* -open.
- $7.$ $(1,2)^{*}$ -g^{*}_a-closed set [\[28\]](#page-9-7) if $(1,2)^{*}$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^{*}$ -g-open in X. The complement of $(1,2)^{\star}$ -*g*^{*}_α-closed set is called $(1,2)^{\star}$ -*g*^{*}_α-open.

Remark 2.6. The collection of all $(1,2)^*$ -g^{*}-closed (resp. $(1,2)^*$ -g_{*}-closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ -gsp*closed,* $(1,2)^*$ - α g-closed, $(1,2)^*$ - sg -closed, $(1,2)^*$ - α -closed, $(1,2)^*$ -semi-closed) sets is denoted by $(1,2)^*$ - $G^*C(X)$ (resp. $(1, 2)^*$ $-G^*_{\alpha}C(X)$, $(1, 2)^*$ $-GC(X)$, $(1, 2)^*$ $-GSC(X)$, $(1, 2)^*$ $-GSPC(X)$, $(1, 2)^*$ α $GC(X)$, $(1, 2)^*$ α $C(X)$, $(1, 2)^*$ α *SC(X)).*

We denote the power set of X by $P(X)$.

Definition 2.7. *A bitopological space X is called:*

- *1.* $(1, 2)^{\star}$ - $T_{1/2}$ -space [\[32\]](#page-9-8) if every $(1, 2)^{\star}$ -g-closed set in it is $\tau_{1,2}$ -closed.
- 2. $(1,2)^*$ -*T*^{*}_{*g*}-space^[28] if every $(1,2)^*$ -g^{*}-closed set in it is $\tau_{1,2}$ -closed.
- 3. $(1,2)^{\star}$ ⁻α T_b -space [\[31\]](#page-9-3) if every $(1,2)^{\star}$ -αg-closed set in it is $\tau_{1,2}$ -closed.

Remark 2.8. *In a bitopological space, the following holds:*

- 1. Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -g^{*}-closed set but not conversely.
- 2. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ -g^{*}_a-closed set but not conversely.
- 3. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ -g-closed set but not conversely.
- 4. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ - α g-closed set but not conversely.
- 5. Every $(1,2)^{\star}$ -g^{*}-closed set is $(1,2)^{\star}$ -gs-closed set but not conversely.
- 6. Every $(1,2)^*$ -g^{*}-closed set is $(1,2)^*$ -gsp-closed set but not conversely.

Definition 2.9. *A function* $f: X \rightarrow Y$ *is called:*

- 1. $(1, 2)^*$ -g-continuous [\[16\]](#page-9-9) if $f^{-1}(V)$ is a $(1, 2)^*$ -g-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 2. $(1,2)^*$ - α g-continuous [\[31\]](#page-9-3) if $f^{-1}(V)$ is an $(1,2)^*$ - α g-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 3. $(1,2)^*$ -gs-continuous [\[31\]](#page-9-3) if $f^{-1}(V)$ is a $(1,2)^*$ -gs-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 4. $(1,2)^*$ -gsp-continuous [\[31\]](#page-9-3) if $f^{-1}(V)$ is a $(1,2)^*$ -gsp-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 5. $(1,2)^*$ -sg-continuous [\[34\]](#page-10-2) if $f^{-1}(V)$ is a $(1,2)^*$ -sg-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 6. $(1,2)^*$ -semi-continuous [\[26\]](#page-9-5) if $f^{-1}(V)$ is a $(1,2)^*$ -semi-open set in X for every $\sigma_{1,2}$ -open set V of Y.
- *7.* $(1,2)^*$ -α-continuous [\[26\]](#page-9-5) if $f^{-1}(V)$ is an $(1,2)^*$ -α-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.

Definition 2.10. *A function f :* $X \rightarrow Y$ *is called:*

- 1. $(1, 2)^*$ -g-irresolute [\[16\]](#page-9-9) if the inverse image of every $(1, 2)^*$ -g-closed set in Y is $(1, 2)^*$ -g-closed in X.
- 2. $(1,2)^{*}$ -sg-irresolute [\[31\]](#page-9-3) if the inverse image of every $(1,2)^{*}$ -sg-closed (resp. $(1,2)^{*}$ -sg-open) set in Y is $(1,2)^{*}$ -sg*closed (resp.* $(1,2)^*$ *-sg-open) in X.*

3. $(1,2)^{\star}$ -g^{*}-continuous Functions

We introduce the following definitions:

Definition 3.1. *A function f :* $X \rightarrow Y$ *is called:*

- 1. $(1, 2)^*$ -g^{*}-continuous if the inverse image of every $\sigma_{1,2}$ -closed set in Y is $(1, 2)^*$ -g^{*}-closed set in X.
- 2. $(1,2)^*$ -g_{α}-continuous if $f^{-1}(V)$ is an $(1,2)^*$ -g_{α}-closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- *3.* strongly $(1,2)^*$ -g^{*}-continuous if the inverse image of every $(1,2)^*$ -g^{*}-open set in Y is $\tau_{1,2}$ -open in X.

Example 3.2. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{c\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{c\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{\overline{b}\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \phi\}$ ${a}$ *, Y*_}. Then the sets in ${\phi$, ${a}$ *, Y*_} are called $\sigma_{1,2}$ -open and the sets in ${\phi$, ${b}$, ${c}$ *}*, *Y*_} are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ $-G^*C(X) = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ $-g^*$ -continuous.

Proposition 3.3. *Every* $(1, 2)^*$ -continuous function is $(1, 2)^*$ -g^{*}-continuous but not conversely.

Example 3.4. The function f in Example [3.2](#page-3-0) is $(1,2)^*$ -g^{*}-continuous but not $(1,2)^*$ -continuous, since $f^{-1}(\{b, c\}) = \{b, c\}$ *is not* $\tau_{1,2}$ *-closed in X.*

Proposition 3.5. *Every* $(1,2)^*$ - g^* -continuous function is $(1,2)^*$ - g^*_{α} -continuous but not conversely.

Example 3.6. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ -G'C(X) = $\{\phi, \{a, c\}, Z\}$ $X\}$ and $(1,2)^{\star}$ - $G_{\alpha}^{\star}C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^{\star}$ - g_{α}^{\star} -continuous *but not* $(1,2)^*$ -g^{*}-continuous, since $f^{-1}(\{a\}) = \{a\}$ is not $(1,2)^*$ -g^{*}-closed in X.

Proposition 3.7. *Every* $(1,2)^*$ - g^* -continuous function is $(1,2)^*$ -g-continuous but not conversely.

Example 3.8. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 =$ ${\phi, {c}, Y}$ *. Then the sets in* ${\phi, {c}, Y}$ *are called* $\sigma_{1,2}$ *-open and the sets in* ${\phi, {a, b}, Y}$ *are called* $\sigma_{1,2}$ *-closed. We* $have (1, 2)^{*}$ - $G^{*}C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1, 2)^{*}$ - $GC(X) = P(X)$. Let $f : X \rightarrow Y$ be the identity function. Then f is $(1,2)^*$ -g-continuous but not $(1,2)^*$ -g^{*}-continuous, since $f^{-1}(\{a, b\}) = \{a, b\}$ is not $(1,2)^*$ -g^{*}-closed in X.

Proposition 3.9. *Every* $(1,2)^*$ - g^* -continuous function is $(1,2)^*$ - α g-continuous but not conversely.

Example 3.10. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, X\}$ ${b}$ *, Y*}*. Then the sets in* ${\phi, {b}$ *, Y*} *are called* $\sigma_{1,2}$ *-open and the sets in* ${\phi, {a, c}$ *, Y*} *are called* $\sigma_{1,2}$ *-closed. We have* $(1,2)^*$ - $G^*C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1,2)^*$ - $\alpha GC(X) = P(X)$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ - α g-continuous but not $(1,2)^*$ -g^{*}-continuous, since $f^{-1}(\{a, c\}) = \{a, c\}$ is not $(1,2)^*$ -g^{*}-closed in X.

Proposition 3.11. *Every* $(1, 2)^*$ -g^{*}-continuous function is $(1, 2)^*$ -gs-continuous but not conversely.

Example 3.12. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the *sets in* $\{\phi, \{a, b\}, Y\}$ *are called* $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^*C(X) = \{\phi, \{c, c, d\} \}$ $\{b, c\}, X\}$ and $(1, 2)^*$ -GSC $(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f *is* $(1,2)^{\star}$ -gs-continuous but not $(1,2)^{\star}$ -g^{*}-continuous, since $f^{-1}(\lbrace c \rbrace) = \lbrace c \rbrace$ *is not* $(1,2)^{\star}$ -g^{*}-closed in X.

Proposition 3.13. *Every* $(1,2)^*$ - g^* -continuous function is $(1,2)^*$ -gsp-continuous but not conversely.

Example 3.14. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{\phi\}, X\}$. Then the sets in $\{\phi, \{\phi\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the *sets in* $\{\phi, \{a, b\}, Y\}$ *are called* $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ - $G^*C(X) = \{\phi, \{c, c, d\} \}$ $\{a, c\}, X\}$ and $(1, 2)^*$ -GSPC(X) = $\{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: X \to Y$ be the identity function. Then f *is* $(1,2)^*$ -gsp-continuous but not $(1,2)^*$ -g^{*}-continuous, since $f^{-1}(\lbrace c \rbrace) = \lbrace c \rbrace$ *is not* $(1,2)^*$ -g^{*}-closed in X.

Remark 3.15. The following examples show that $(1,2)^*$ -g^{*}-continuity is independent of $(1,2)^*$ - α -continuity and $(1,2)^*$ *semi-continuity.*

Example 3.16. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}$, X $\}$. Then the sets in $\{\phi, \{a, b\}$, X $\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then *the sets in* $\{\phi, \{a\}, Y\}$ *are called* $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^*C(X)$ $=\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $\alpha C(X) = (1,2)^*$ - $SC(X) = \{\phi, \{c\}, X\}$. Let $f: X \to Y$ be the identity function. *Then f is* $(1,2)^*$ -*g*^{\star}-continuous but it is neither $(1,2)^*$ - α -continuous nor $(1,2)^*$ -semi-continuous, since $f^{-1}(\{b, c\}) = \{b, c\}$ *is neither* $(1,2)^{\star}$ - α -closed nor $(1,2)^{\star}$ -semi-closed in X.

Example 3.17. In Example [3.12,](#page-3-1) we have $(1, 2)^* - G^*C(X) = \{\phi, \{b, c\}, X\}$ and $(1, 2)^* - \alpha C(X) = (1, 2)^* - S C(X) = \{\phi, \{b\}, X\}$ ${c}$ *,* ${b}$, ${c}$ *}*, ${X}$ *}. Let f : X* \rightarrow *Y be the identity function. Then f is both* $(1,2)^*$ *-* α *-continuous and* $(1,2)^*$ *-semi-continuous but it is not* $(1, 2)^{*}$ -g^{*}-continuous, since $f^{-1}(\lbrace c \rbrace) = \lbrace c \rbrace$ *is not* $(1, 2)^{*}$ -g^{*}-closed in X.

Proposition 3.18. *A function f : X* → *Y* is $(1,2)^*$ -g^{*}-continuous if and only if $f^{-1}(U)$ is $(1,2)^*$ -g^{*}-open in *X* for every $\sigma_{1,2}$ -open set U in Y.

Proof. Let $f: X \to Y$ be $(1, 2)^*$ -g^{*}-continuous and U be an $\sigma_{1,2}$ -open set in Y. Then U^c is $\sigma_{1,2}$ -closed in Y and since f is $(1,2)^{\star}$ -g^{*}-continuous, $f^{-1}(U^c)$ is $(1,2)^{\star}$ -g^{*}-closed in X. But $f^{-1}(U^c) = (f^{-1}(U))^c$ and so $f^{-1}(U)$ is $(1,2)^{\star}$ -g^{*}-open in X.

Conversely, assume that $f^{-1}(U)$ is $(1,2)^*$ -g^{*}-open in X for each $\sigma_{1,2}$ -open set U in Y. Let F be a $\sigma_{1,2}$ -closed set in Y. Then F^c is $\sigma_{1,2}$ -open in Y and by assumption, $f^{-1}(F^c)$ is $(1,2)^*$ - g^* -open in X. Since $f^{-1}(F^c) = (f^{-1}(F))^c$, we have $f^{-1}(F)$ is $(1, 2)^{\star}$ -g^{*}-closed in X and so f is $(1, 2)^{\star}$ -g^{*}-continuous. \Box

Remark 3.19. The composition of two $(1,2)^*$ -g^{*}-continuous functions need not be a $(1,2)^*$ -g^{*}-continuous function as shown *in the following example.*

Example 3.20. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{a, b\}, X\}$ $\{a, c\}$, X are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi,$ $Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $Z = \{a, b, c\}$, $\eta_1 = \{\phi, Z\}$ and $\eta_2 = \{\phi, \{b\}, Z\}$. Then the sets in $\{\phi, \{b\}, Z\}$ are called $\eta_{1,2}$ -open and *the sets in* $\{\phi, \{a, c\}, Z\}$ *are called* $\eta_{1,2}$ *-closed. Let* $f: X \to Y$ *and* $g: Y \to Z$ *be the identity functions. Then* f and g are $(1,2)^*$ -g^{*}-continuous but g o $f: X \to Z$ is not $(1,2)^*$ -g^{*}-continuous, since for the set $V = \{a, c\}$ is $\eta_{1,2}$ -closed in Z, (g c $f^{-1}(V) = f^{-1}(g^{-1}(V)) = f^{-1}(g^{-1}(\{a, c\})) = f^{-1}(\{a, c\}) = \{a, c\}$ *is not* $(1, 2)^*$ -g^{*}-closed in X.

Proposition 3.21. Let X and Z be bitopological spaces and Y be a $(1,2)^*$ -T_g-space. Then the composition g o $f: X \to Z$ *of the* $(1,2)^{*}$ -g^{*}-continuous functions $f: X \to Y$ and $g: Y \to Z$ is $(1,2)^{*}$ -g^{*}-continuous.

 \Box

Proof. Let F be any $\eta_{1,2}$ -closed set of Z. Then $g^{-1}(F)$ is $(1,2)^*$ -g^{*}-closed in Y, since g is $(1,2)^*$ -g^{*}-continuous. Since Y is a $(1,2)^*$ -T_g^{-space, $g^{-1}(F)$ is $\sigma_{1,2}$ -closed in Y. Since f is $(1,2)^*$ -g^{*}-continuous, $f^{-1}(g^{-1}(F))$ is $(1,2)^*$ -g^{*}-closed in X. But} $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ and so g o f is $(1,2)^*$ -g^{*}-continuous. \Box

Proposition 3.22. Let X and Z be bitopological spaces and Y be a $(1,2)^*$ - $T_{1/2}$ -space (resp. $(1,2)^*$ - T_b -space, $(1,2)^*$ - αT_b space). Then the composition g o $f : X \to Z$ of the $(1,2)^*$ -g^{*}-continuous function $f : X \to Y$ and the $(1,2)^*$ -g-continuous $(resp. (1,2)^{\star}$ -gs-continuous, $(1,2)^{\star}$ - α g-continuous) function $g: Y \to Z$ is $(1,2)^{\star}$ -g^{*}-continuous.

Proof. Similar to Proposition [3.21.](#page-4-0)

Proposition 3.23. If $f: X \to Y$ is $(1,2)^*$ -g^{*}-continuous and $g: Y \to Z$ is $(1,2)^*$ -continuous, then their composition g c $f: X \to Z$ is $(1,2)^*$ -g^{*}-continuous.

Proof. Let F be any $\eta_{1,2}$ -closed set in Z. Since $g: Y \to Z$ is $(1,2)^*$ -continuous, $g^{-1}(F)$ is $\sigma_{1,2}$ -closed in Y. Since $f: X \to Z$ Y is $(1,2)^*$ -g^{*}-continuous, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is $(1,2)^*$ -g^{*}-closed in X and so g o f is $(1,2)^*$ -g^{*}-continuous. \Box

Proposition 3.24. Let A be $(1,2)^*$ -g^{*}-closed in X. If $f : X \to Y$ is $(1,2)^*$ -g-irresolute and $(1,2)^*$ -closed, then $f(A)$ is $(1,2)^*$ -g^{*}-closed in Y.

Proof. Let U be any $(1,2)^*$ -g-open in Y such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$ and by hypothesis, $\tau_{1,2}$ -cl $(A) \subseteq f^{-1}(U)$. Thus $f(\tau_{1,2}-cl(A)) \subseteq U$ and $f(\tau_{1,2}-cl(A))$ is a $\sigma_{1,2}-closed$ set. Now, $\sigma_{1,2}-cl(f(A)) \subseteq \sigma_{1,2}-cl(f(\tau_{1,2}-cl(A))) = f(\tau_{1,2}-cl(A)) \subseteq U$. i.e., $\sigma_{1,2}$ -cl(f(A)) \subseteq U and so f(A) is $(1,2)^{*}$ -g^{*}-closed. \Box

4. $(1,2)^{\star}$ -g^{*}-irresolute Functions

We introduce the following definition.

Definition 4.1. A function $f: X \to Y$ is called an $(1,2)^*$ -g^{*}-irresolute if the inverse image of every $(1,2)^*$ -g^{*}-closed set in *Y* is $(1, 2)^*$ -g^{*}-closed in *X*.

Remark 4.2. The following examples show that the notions of $(1,2)^*$ -sg-irresolute functions and $(1,2)^*$ -g^{*}-irresolute func*tions are independent.*

Example 4.3. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, \{a, b\}, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ -G^{*}C(X) = { ϕ , {c}, {a, c}, {b, c}, X}, SGC(X) = { ϕ , {c}, {a, c}, {b, c}, X}, $(1,2)^*$ -G^{*}C(Y) = { ϕ , {c}, $\{a, c\}, \{b, c\}, Y\}$ and $(1,2)^{*}$ -SGC $(Y) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, Y\}$. Let $f: X \to Y$ be the identity function. *Then f is* $(1,2)^*$ -g^{*}-irresolute but it is not $(1,2)^*$ -sg-irresolute, since $f^{-1}(\{b\}) = \{b\}$ is not $(1,2)^*$ -sg-closed in X.

Example 4.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ X are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{b\}, X\}$ Y_1 and $\sigma_2 = \{\phi, \{\phi, c\}, Y\}$. Then the sets in $\{\phi, \{\phi\}, \{\phi, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{\phi\}, \{\phi, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^*C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $SC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, X\}$ c}, {b, c}, X}, (1,2)*-G*C(Y) = { ϕ , {a}, {a, b}, {a, c}, Y} and (1,2)*-SGC(Y) = { ϕ , {a}, {c}, {a, c}, Y}. Let f: X \rightarrow *Y* be the identity function. Then f is $(1,2)^*$ -sg-irresolute but it is not $(1,2)^*$ -g^{*}-irresolute, since $f^{-1}(\{a\}) = \{a\}$ is not $(1,2)^*$ -g^{*}-closed in X.

Proposition 4.5. A function $f: X \to Y$ is $(1,2)^*$ -g^{*}-irresolute if and only if the inverse of every $(1,2)^*$ -g^{*}-open set in Y *is* $(1,2)^*$ -*g*^{*}-open in X.

Proof. Similar to Proposition [3.18.](#page-4-1)

Proposition 4.6. If a function $f: X \to Y$ is $(1, 2)^{*}$ -g^{*}-irresolute then it is $(1, 2)^{*}$ -g^{*}-continuous but not conversely.

Example 4.7. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then *the sets in* $\{\phi, \{a, b\}, Y\}$ *are called* $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1, 2)^*$ -G^{*}C (X) $=\{\phi, \{a, c\}, X\}$ and $(1,2)^* G^* C(Y) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}$. Let $f: X \to Y$ be the identity function. Then f is $(1,2)$ ^{*★*}-g^{*★*}-continuous but it is not $(1,2)$ ^{*★*}-g^{*★*-irresolute, since $f^{-1}(\{a\}) = \{a\}$ is not $(1,2)$ ^{*★*}-g^{*★*}-open in X.}

Proposition 4.8. Let X be any bitopological space, Y be a $(1,2)^*$ -T_g⁻-space and $f: X \to Y$ be a function. Then the following *are equivalent:*

- *1. f is* $(1,2)^*$ *-g*^{*}*-irresolute.*
- 2. *f* is $(1,2)^*$ - g^* -continuous.

Proof.

 $(1) \Rightarrow (2)$ Follows from Proposition [4.6.](#page-6-0)

 $(2) \Rightarrow (1)$ Let F be a $(1,2)^{*}$ -g^{*}-closed set in Y. Since Y is a $(1,2)^{*}$ - T_g^* -space, F is a $\sigma_{1,2}$ -closed set in Y and by hypothesis, $f^{-1}(F)$ is $(1,2)^{*}$ -g^{*}-closed in X. Therefore f is $(1,2)^{*}$ -g^{*}-irresolute. \Box

Definition 4.9. A function $f: X \to Y$ is called pre- $(1, 2)^*$ -g-open if $f(U)$ is $(1, 2)^*$ -g-open in Y, for each $(1, 2)^*$ -g-open set *U in X.*

Proposition 4.10. If $f: X \to Y$ is bijective pre- $(1, 2)^*$ -g-open and $(1, 2)^*$ -g^{*}-continuous then f is $(1, 2)^*$ -g^{*}-irresolute.

Proof. Let A be $(1,2)^{\star}$ -g^{*}-closed set in Y. Let U be any $(1,2)^{\star}$ -g-open set in X such that $f^{-1}(A) \subseteq U$. Then $A \subseteq f(U)$. Since A is $(1,2)^*$ -g^{*}-closed and f(U) is $(1,2)^*$ -g-open in Y, $\sigma_{1,2}$ -cl(A) \subseteq f(U) holds and hence $f^{-1}(\sigma_{1,2}$ -cl(A)) \subseteq U. Since f is $(1,2)^{\star}$ -g^{*}-continuous and $\sigma_{1,2}$ -cl(A) is $\sigma_{1,2}$ -closed in Y, $f^{-1}(\sigma_{1,2}$ -cl(A)) is $(1,2)^{\star}$ -g^{*}-closed and hence $\tau_{1,2}$ -cl($f^{-1}(\sigma_{1,2}$ -cl(A))) \subseteq U and so $\tau_{1,2}$ -cl(f⁻¹(A)) \subseteq U. Therefore, f⁻¹(A) is $(1,2)$ ^{*}-g^{*}-closed in X and hence f is $(1,2)$ ^{*}-g^{*}-irresolute. \Box

The following examples show that no assumption of Proposition [4.10](#page-6-1) can be removed.

Example 4.11. The identity function defined in Example [4.7](#page-6-2) is $(1,2)^*$ -g^{*}-continuous and bijective but not pre- $(1,2)^*$ -g-open and so f is not $(1,2)^*$ -g^{*}-irresolute.

Example 4.12. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. X} are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, X\}$ Y} and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $G^*C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*$ - $GC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, X\}$ c}, {b, c}, X}, (1,2)* $-G^*C(Y) = \{\phi, \{a\}, \{b, c\}, Y\}$ and $(1,2)^* GC(Y) = P(Y)$. Let $f: X \to Y$ be the identity function. *Then f is bijective and pre-*(1, 2)^{*}-g-open but not $(1, 2)$ ^{*}-g^{*}-continuous and so f is not $(1, 2)$ ^{*}-g^{*}-irresolute, since $f^{-1}(\{a\}) =$ ${a}$ *is not* $(1, 2)^*$ *-g*^{*}*-closed in X.*

Proposition 4.13. If $f: X \to Y$ is bijective $(1,2)^*$ -closed and $(1,2)^*$ -g-irresolute then the inverse function $f^{-1}: Y \to X$ $is (1,2)^*$ -g^{*}-irresolute.

 \Box

Proof. Let A be $(1,2)^*$ -g^{*}-closed in X. Let $(f^{-1})^{-1}(A) = f(A) \subseteq U$ where U is $(1,2)^*$ -g-open in Y. Then $A \subseteq f^{-1}(U)$ holds. Since $f^{-1}(U)$ is $(1,2)^*$ -g-open in X and A is $(1,2)^*$ -g^{*}-closed in X, $\tau_{1,2}$ -cl(A) $\subseteq f^{-1}(U)$ and hence $f(\tau_{1,2}$ -cl(A)) $\subseteq U$. Since f is $(1,2)^*$ -closed and $\tau_{1,2}$ -cl(A) is closed in X, $f(\tau_{1,2}$ -cl(A)) is $\sigma_{1,2}$ -closed in Y and so $f(\tau_{1,2}$ -cl(A)) is $(1,2)^*$ -g^{*}-closed in Y. Therefore $\sigma_{1,2}$ -cl(f($\tau_{1,2}$ -cl(A))) $\subseteq U$ and hence $\sigma_{1,2}$ -cl(f(A)) $\subseteq U$. Thus f(A) is $(1,2)^*$ -g^{*}-closed in Y and so f⁻¹ is $(1,2)^{\star}$ -g^{*}-irresolute. \Box

5. Applications

To obtain a decomposition of $(1,2)^*$ -continuity, we introduce the notion of $(1,2)^*$ -glc^{*}-continuous function in bitopological spaces and prove that a function is $(1,2)^*$ -continuous if and only if it is both $(1,2)^*$ -g^{*}-continuous and $(1,2)^*$ -glc^{*}-continuous.

Definition 5.1. A subset A of a bitopological space X is called $(1,2)^*$ -glc*-set if $A = M \cap N$, where M is $(1,2)^*$ -g-open and N *is* τ_1 ₂-closed in X.

The family of all $(1,2)^*$ -glc^{*}-sets in a space X is denoted by $(1,2)^*$ -glc^{*}(X).

Example 5.2. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{c\}, X\}$. Then the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -open *and the sets in* $\{\phi, \{a, b\}, X\}$ *are called* $\tau_{1,2}$ *-closed. Then* $\{a\}$ *is* $(1, 2)^*$ *-glc*^{*}*-set in* X.

Remark 5.3. *Every* $\tau_{1,2}$ -closed set is $(1,2)^*$ -glc^{*}-set but not conversely.

Example 5.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open *and the sets in* $\{\phi, \{b, c\}, X\}$ *are called* $\tau_{1,2}$ -closed. Then $\{a, b\}$ *is* $(1, 2)^*$ -glc^{*}-set but not $\tau_{1,2}$ -closed in X.

Remark 5.5. $(1,2)^*$ -g^{*}-closed sets and $(1,2)^*$ -glc^{*}-sets are independent of each other.

Example 5.6. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open *and the sets in* $\{\phi, \{b\}, X\}$ *are called* $\tau_{1,2}$ -closed. Then $\{b, c\}$ *is a* $(1, 2)$ ^{*}-g^{*}-closed set but not $(1, 2)$ ^{*}-glc^{*}-set *in* X.

Example 5.7. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open *and the sets in* $\{\phi, \{a, c\}, X\}$ *are called* $\tau_{1,2}$ -*closed. Then* $\{a, b\}$ *is an* $(1, 2)^*$ -glc^{*}-set but not $(1, 2)^*$ -g⁺-closed set in X.

Proposition 5.8. Let X be a bitopological space. Then a subset A of X is $\tau_{1,2}$ -closed if and only if it is both $(1,2)^*$ -g^{*}-closed and $(1,2)^{\star}$ -glc^{*}-set.

Proof. Necessity is trivial. To prove the sufficiency, assume that A is both $(1,2)^* - g^*$ -closed and $(1,2)^* - g^*$ -set. Then A = M \cap N, where M is $(1,2)^*$ -g-open and N is $\tau_{1,2}$ -closed in X. Therefore, A \subseteq M and A \subseteq N and so by hypothesis, $\tau_{1,2}$ -cl(A) \subseteq M and $\tau_{1,2}$ -cl(A) \subseteq N. Thus $\tau_{1,2}$ -cl(A) \subseteq M \cap N = A and hence $\tau_{1,2}$ -cl(A) = A i.e., A is $\tau_{1,2}$ -closed in X. \Box

We introduce the following definition.

Definition 5.9. A function $f: X \to Y$ is said to be $(1,2)^*$ -glc^{*}-continuous if for each $\sigma_{1,2}$ -closed set V of Y, $f^{-1}(V)$ is an $(1,2)^{\star}$ -glc^{*}-set in X.

Example 5.10. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in { ϕ , { a }, { b , c}, Y} are called $\sigma_{1,2}$ -open and the sets in { ϕ , { a }, { b , c}, Y} are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ *be the identity function. Then f is* $(1,2)^*$ -glc^{*}-continuous function.

Remark 5.11. From the definitions it is clear that every $(1,2)^*$ -continuous function is $(1,2)^*$ -glc^{*}-continuous but not *conversely.*

Example 5.12. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{b\}, Y\}$ and $\sigma_2 = \{\phi, \{a, c\}, Y\}$. Then the sets in $\{\phi, \{b\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ *be the identity function. Then f is* $(1,2)^*$ -glc^{*}-continuous function but not $(1,2)^*$ -continuous. Since for the $\sigma_{1,2}$ -closed set ${b}$ *in Y, f*⁻¹({*b*}*)* = {*b*}*, which is not* $\tau_{1,2}$ *-closed in X.*

Remark 5.13. $(1,2)^*$ -g^{*t*}-continuity and $(1,2)^*$ -glc^{*t*}-continuity are independent of each other.

Example 5.14. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}$, $X\}$. Then the sets in $\{\phi, \{a, b\}$, $X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the *sets in* $\{\phi, \{a\}, Y\}$ *are called* $\sigma_{1,2}$ *-open and the sets in* $\{\phi, \{b, c\}, Y\}$ *are called* $\sigma_{1,2}$ *-closed. Let* $f : X \to Y$ *be the identity function.* Then *f* is $(1,2)^{*}$ - g^* -continuous function but not $(1,2)^{*}$ -glc^{*}-continuous.

Example 5.15. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the *sets in* $\{\phi, \{b, c\}, Y\}$ *are called* $\sigma_{1,2}$ *-open and the sets in* $\{\phi, \{a\}, Y\}$ *are called* $\sigma_{1,2}$ *-closed. Let* $f : X \to Y$ *be the identity function.* Then *f* is $(1,2)^*$ -glc^{*}-continuous function but not $(1,2)^*$ -g^{*}-continuous.

We have the following decomposition for $(1, 2)^*$ -continuity.

Theorem 5.16. A function $f: X \to Y$ is $(1,2)^*$ -continuous if and only if it is both $(1,2)^*$ -g^{*}-continuous and $(1,2)^*$ -glc^{*}*continuous.*

Proof. Assume that f is $(1,2)^*$ -continuous. Then by Proposition [3.3](#page-3-2) and Remark [5.11,](#page-8-3) f is both $(1,2)^*$ - g^* -continuous and $(1,2)^{\star}$ -glc^{*}-continuous.

Conversely, assume that f is both $(1,2)^*$ -g^{*}-continuous and $(1,2)^*$ -glc^{*}-continuous. Let V be a $\sigma_{1,2}$ -closed subset of Y. Then $f^{-1}(V)$ is both $(1,2)^*$ -g^{*}-closed set and $(1,2)^*$ -glc^{*}-set. By Proposition [5.8,](#page-7-0) $f^{-1}(V)$ is a $\tau_{1,2}$ -closed set in X and so f is $(1,2)^*$ -continuous. \Box

References

- [1] M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β*-open sets and* β*-continuous mappings*, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] D.Andrijevic, *Semi-preopen sets*, Mat. Vesnik, 38(1986), 24-32.
- [3] J.Antony Rex Rodrigo, O.Ravi, A.Pandi and C.M.Santhana, On $(1,2)^*$ -s-normal spaces and pre- $(1,2)^*$ -gs-closed func*tions*, International Journal of Algorithms, Computing and Mathematics, 4(1)(2011), 29-42.
- [4] F.G.Arenas, J.Dontchev and M.Ganster, *On* λ*-sets and dual of generalized continuity*, Questions Answers Gen. Topology, 15 (1997), 3-13.
- [5] S.P.Arya and T.M.Nour, *Characterizations of s-normal spaces*, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- [6] K.Balachandran, P.Sundaram and H.Maki, *On generalized continuous maps in topological spaces*, Mem. Fac. Sci. Kochi Univ. Math., 12(1991), 5-13.
- [7] P.Bhattacharyya and B.K.Lahiri, *Semi-generalized closed sets in topology*, Indian J. Math., 29(3)(1987), 375-382.
- [8] D.E.Cameron, *Topology atlas*, [http://gozips. uakron. deu/.](http://gozips. uakron. deu/)
- [9] J.Cao, M.Ganster and I.Reilly, *On sg-closed sets and g*α*-closed sets*, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 20(1999), 1-5.
- [10] J.Cao, M.Ganster and I.Reilly, *Submaximality, extremal disconnectedness and generalized closed sets*, Houston J. Math., 24(1998), 681-688.
- [11] R.Devi, K.Bhuvaneswari and H.Maki, *Weak forms of go-closed sets, where* $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}\$ *and digital plane*, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 25(2004), 37-54.
- [12] R.Devi, K.Balachandran and H.Maki, *On generalized* α*-continuous maps and* α*-generalized continuous maps*, Far East J. Math. Sci., Special Volume, Part I(1997), 1-15.
- [13] J.Dontchev and M.Ganster, *On* δ*-generalized closed sets and T*³/⁴*-spaces*, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17 (1996), 15-31.
- [14] W.Dunham, *T*¹/²*-spaces*, Kyungpook Math. J., 17(1977), 161-169.
- [15] Z.Duszynski, M.Jeyaraman, M.S.Joseph, O.Ravi and M.L.Thivagar, *A new generalization of closed sets in bitopology*, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [16] K.Kayathri, O.Ravi, M.L.Thivagar and M.Joseph Israel, *Decompositions of* $(1,2)^*$ -rg-continuous maps in bitopological *spaces*, Antarctica J. Math., 6(1)(2009), 13-23.
- [17] J.C.Kelly, *Bitopological spaces*, Proc. London Math. Soc., 13(1963), 71-89.
- [18] M.Lellis Thivagar, O.Ravi and M.E.Abd El-Monsef, *Remarks on bitopological* (1,2)^{*}-quotient mappings, J. Egypt Math. Soc., 16(1)(2008), 17-25.
- [19] N.Levine, *Generalized closed sets in topology*, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [20] N.Levine, *Semi-open sets and semi-continuity in topological spaces*, Amer. Math. Monthly, 70(1963), 36-41.
- [21] N.Levine, *Some remarks on the closure operator in topological spaces*, Amer. Math. Monthly, 70(5)(1963), 553.
- [22] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, *On precontinuous and weak pre continuous mappings*, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [23] O.Njastad, *On some classes of nearly open sets*, Pacific J. Math., 15(1965), 961-970.
- [24] M.Rajamani and K.Viswanathan, *On* α*gs-closed sets in topological spaces*, Acta Ciencia Indica, XXXM(3)(2004), 21-25.
- [25] C.Rajan, *Further study of new bitopological generalized continuous functions*, Ph. D Thesis, Madurai Kamaraj University, Madurai, (2014).
- [26] O.Ravi, M.L.Thivagar and E.Hatir, *Decomposition of* (1, 2)^{*}-continuity and (1, 2)^{*}-α-continuity, Miskolc Mathematical Notes., 10(2)(2009), 163-171.
- [27] O.Ravi and M.L.Thivagar, *Remarks on* λ -irresolute functions via $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
- [28] O.Ravi, M.Jeyaraman, M.Sajan Joseph and R.Muthuraj, $(1,2)^*$ - g^* -closed sets, submitted.
- [29] O.Ravi, E.Ekici and M.Lellis Thivagar, *On* $(1,2)^*$ -sets and decompositions of bitopological $(1,2)^*$ -continuous mappings, Kochi J. Math., 3(2008), 181-189.
- [30] O.Ravi, K.Kayathri, M.L.Thivagar and M.Joseph Israel, *Mildly* (1, 2)^{*}-normal spaces and some bitopological functions, Mathematica Bohemica, 135(1)(2010), 1-15.
- [31] O.Ravi, A.Pandi and R.Latha, *Contra-pre-*(1,2)^{*}-semi-continuous functions, Bessel Journal of Mathematics (To appear).
- [32] O.Ravi, S.Pious Missier and T.Salai Parkunan, On bitopological $(1,2)^*$ -generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11)(2010), 543-557.
- [33] O.Ravi, M.L.Thivagar and E.Ekici, *Decomposition of* $(1,2)^*$ -continuity and complete $(1,2)^*$ -continuity in bitopological *spaces*, Analele Universitatii Din Oradea. Fasc. Matematica Tom XV (2008), 29-37.
- [34] O.Ravi, M.L.Thivagar and Jinjinli, *Remarks on extensions of* $(1,2)^*$ -g-closed maps, Archimedes J. Math., $1(2)(2011)$, 177-187.
- [35] O.Ravi, A.Pandi, S.Pious Missier and T.Salai Parkunan, *Remarks on bitopological* $(1,2)^*$ -*rw*-Homeomorphisms, International Journal of Mathematical Archive, 2(4)(2011), 465-475.
- [36] M.Sheik John, *A study on generalizations of closed sets and continuous maps in topological and bitopological spaces*, Ph.D Thesis, Bharathiar University, Coimbatore, September, (2002).
- [37] M.K.R.S.Veera Kumar, g #*-closed sets in topological spaces*, Mem. Fac. Sci. Kochi Univ. (Math.)., 24(2003), 1-13.
- [38] M.K.R.S.Veera Kumar, *Between closed sets and g-closed sets*, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 21(2000), 1-19.
- [39] M.K.R.S.Veera Kumar, \hat{g} -closed sets in topological spaces, Bull. Allah. Math. Soc., 18(2003), 99-112.