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Abstract: By extending the notion of pseudo d-achromatic number in the context of (k, d)-coloring and introduced the concept of
pseudo d-achromatic number ψds (G) of a graph G. In this paper, I introduce the concept of pseudo d-achromatic index

ψd
′

s (G) in the context of (k, d)-edge coloring of G and discuss the upper bound for this parameter and determine its
characterization and provide several values of this pseudo d-achromatic index of some families of graphs.
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1. Introduction

Let G be a simple graph. A coloring of its vertices C : V(G) → {1,2,3,. . . ,k} is pseudo complete if every pair of different

colors appears in an edge. The pseudo achromatic number ψs(G) is the maximum k for which there exists a pseudo complete

coloring of G. If the coloring is required to be proper (that is each chromatic class is independent) then such a maximum is

known as the achromatic number of G which is denoted by ψ(G). The chromatic number χ(G) is the minimum number of

colors required for a proper vertex coloring of G. A chromatic coloring that used χ(G)-colors is a complete coloring. Hence

χ(G) ≤ ψ(G) ≤ ψs(G) [1]. Vince [6] introduced the concept of star chromatic number which is the natural generalization

of chromatic number. Let k and d be positive integers with k ≥ 2d. Let Zk = {1,2,. . . ,k} be the set of integers modulo

k and Dk(x, y) = min{|x − y|, k - |x − y|}. Then a (k, d)-coloring of a graph G is a mapping C : V(G) → Zk such that

Dk(C(u),C(v)) ≥ d for each edge uv ∈ E. Similarly the concept of (k, d)-edge coloring of G is a mapping C : E(G) → Zk

such that Dk(C(ei),C(ej)) ≥ d for every adjacent edges ei, ej ∈ E(G).

The concept of pseudo complete d-coloring and pseudo d-achromatic number of a graph G in the context of (k, d)-coloring

was introduced in [5]. In this paper, I extend the analogus result in the context of (k, d)-edge coloring of G. Now I introduce

the pseudo d-achromatic index of a graph G. and present some basic results on this parameter in the context of (k, d)-edge

coloring of G.

2. Main Results

Definition 2.1. Let k and d be two positive integers with k ≥ 2d. A pseudo edge complete d-coloring of G using k colors

is a mapping ϕ : E(G) → Zk such that for any two colors i, j ∈ Zk with Dk(i, j) ≥ d there exists adjacent edges ex, ey

∗ E-mail: dharma samuel@yahoo.com

✶

http://ijcrst.in/


Pseudo dachromatic Index of Graphs

such that ϕ(ex) = i and ϕ(ey) = j. A graph having a pseudo edge complete d-coloring using k colors is called k-pseudo edge

complete d-colorable graph. The maximum value of k for which G is k-pseudo edge complete d-colorable is called the pseudo

edge d-achromatic number or pseudo d-achromatic index of G and is denoted by ψd
′

s (G). If pseudo edge complete d-coloring

of G proper, then such a maximum value of k is called d-achromatic index of G which is denoted by ψd
′

(G).

Result 2.2. The pseudo d-achromatic index of a graph G also interpreted as the pseudo d-achromatic number of the line

graph L(G) of a graph G. That is ψd
′

s (G) = ψds [L(G)].

Example 2.3. The Petersen graph and three dimensional hyper cube are 7-pseudo edge 2-colorable graphs as shown in figure

1 and figure 2.

Figure 1. The (10, 15)-Peterson graph

Figure 2. Three dimensional hyper cube graph

Result 2.4. Let k and d be positive integers with k ≥ 2d. Consider the graph Gdk = (V,E) where V= { v1,v2,. . . ,vk}

and E={(vi, vj) / Dk(i, j) ≥ d}. Clearly Gdk is a (k-2d+1)-regular graph and the size of the graph is k(k−2d+1)
2

and Gdk is

k-pseudo edge complete d-colorable graph. The following figure 3 shows G2
6 is 6-pseudo edge 2-colorable therefore ψ2

′

s (G2
6) ≥ 6

where as ψ2
′

(G2
6) = 5 = χ2

′

(G2
6) as shown in figure 4.
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Figure 3.

Figure 4.

Result 2.5. If G admits k-pseudo edge complete d-coloring, then for any pair of adjacent edges, having colors i and j with

Dk(i, j) ≥ d there exists atleast one vertex.

Theorem 2.6. The star graph K1,q(that is the complete bipartite graph with bipartition (X, Y) of the vertex set such that

|X| = 1 and |Y | = q) is q-pseudo edge complete d-colorable graph with q ≥ 2d and ψd
′

s (K1,q) = q.

Proof. The vertex set of the star graph has bipartition (X, Y) where X= {v} and Y = {v1,v2,. . . ,vq } and E(K1,q) =

{ vv1,vv2,. . . ,vvq} then f : E(K1,q) → {1,2,. . . ,q} defined by f(vvi) = i where 1 ≤ i ≤ q gives a q-pseudo edge complete

d-coloring of K1,q. Hence ψd
′

s (K1,q) ≥ q. Now claim ψd
′

s (K1,q) ≤ q. Suppose ψd
′

s (K1,q) = q + 1 under some optimal pseudo

edge complete d-coloring f. Then f will assign distinct colors to the edges of K1,q. If q + 1th color is assigned to one of the

q edges, one color say i where 1 ≤ i ≤ q is left out so that atleast one color pair i, j of adjacent edges with Dk(i, j) ≥ d, does

not appear,a contradiction. Therefore ψd
′

s (K1,q) ≤ q. Hence we get ψd
′

s (K1,q) = q.

Proposition 2.7. Let G be a k-pseudo edge complete d-colorable graph. Then |E(G)| ≥ k⌈ k−2d+1
∆

⌉ where k ≥ 2d, and ∆,

maximum degree of the graph G.

Proof. Since G is k-pseudo edge complete d-colorable graph. Then the line graph L(G) is k-pseudo complete d-colorable

graph. Consider any k-pseudo complete d-coloring of L(G), for any color c, there exists k-2d+1 edges in L(G) such that

one end vertex of each of these k-2d+1 edges receive the color c. Hence there must be atleast ⌈ k−2d+1
∆

⌉ vertices having the

✸
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color c so that |V (L(G))| ≥ k⌈ k−2d+1
∆

⌉. Therefore, |E(G)| ≥ k⌈ k−2d+1
∆

⌉ since V (L(G)) = E(G) for any graph G. Hence the

result.

Corollary 2.8. For any graph with maximum degree ∆, ψd
′

s (G) ≤ max{k/k⌈ k−2d+1
∆

⌉ ≤ |E(G)|}.

Theorem 2.9. Let k and d be positive integers with k ≥ 2d, then ψd
′

s (Gd2d+1) = 2d + 1.

Proof. Let the vertex set of V(Gd2d+1) = { v1,v2,. . . , v2d+1 } and E(Gd2d+1) = {(vi, vj)/Dk(i, j) ≥ d}. Clearly Gd2d+1 is a

regular graph of degree 2 and the size of the graph is 2d+1. Hence Gd2d+1 is itself a cycle C = { vd+1, v1, vd+2, v2, vd+3,. . . ,

v2d+1vd+1} consisting of 2d +1 edges. Let the edge set of C be { e1 = vd+1v1,e2 = v1vd+2, e3 = vd+2v2,e4 =v2vd+3, . . . ,e2d+1

= v2d+1vd+1} and ϕ : E(Gd2d+1) → {1,2,. . . . . . . . . . . . . . . . . . , 2d + 1} defined by ϕ(e1) = 1 and ϕ(ei) = (i - 1) + d mod(2d

+ 1) where 2 ≤ i ≤ 2d+ 1 gives a (2d +1)-pseudo edge complete d-coloring of Gd2d+1. Hence

ψd
′

s (Gd2d+1) ≥ 2d+ 1. (1)

By corollary 2.8, we have ψd
′

s (Gd2d+1) ≤ max{2d+ 1/(2d+ 1)⌈ 2d+1−2d+1
2

⌉ ≤ |E(Gd2d+1)|}. Hence

ψd
′

s (Gd2d+1) ≤ 2d+ 1. (2)

Hence we have ψd
′

s (Gd2d+1) = 2d+ 1 by (1) and (2).

Theorem 2.10. Let k and d be positive integers such that k ≥ 2d. Let n(k, d) denote the integer k(k−2d+1)
2

or k(k−2d+1)
2

+ k
2

according as k is odd or even. Then the cycle C on n(k,d) vertices is k-pseudo edge complete d-colorable graph.

Proof.

Case (I): k is odd

Consider the graph Gdk on k vertices {v1, v2, . . . , vk} which is (k-2d+1)-regular. Since k is odd, Gdk is an Eulerian graph.

Consider the euler tour T of Gdk which will contain k(k−2d+1)
2

edges and has the same starting and end vertices. Let it

be { x1, x2, . . . , xk(k−2d+1)}. Consider a cycle on k(k−2d+1)
2

vertices and hence k(k−2d+1)
2

edges. Let its edge set E = {

e1,e2,. . . ,ek,. . . ,e k(k−2d+1)
2

}. For 1 ≤ i ≤ k(k−2d+1)
2

, ϕ : E(C) → {1, 2, 3, . . . , k} defined by ϕ(ei) = xi gives k-pseudo edge

complete d-coloring of the cycle C on n(k, d)= k(k−2d+1)
2

vertices.

Case (II): k is even

If k = 2d, then n = k and the number of pairs i, j ∈ {1, . . . , k} with Dk(i, j) ≥ d is exactly k
2
. Since the cycle C

containing an independent set of k
2
vertices, it follows C admits a k-pseudo edge complete d-coloring. Suppose k > 2d,

consider the graph Gdk with vertex set {v1,v2,. . . ,vk } and adding k
2

new edges ({viv k
2
+i}/1 ≤ i ≤ k

2
) to Gdk and the

resulting graph is an eulerian graph and has an euler tour T. Then the euler tour T has k(k−2d+1)
2

+ k
2

edges say T =

{x1,x2,. . . ,x k(k−2d+1)
2

+ k
2

}. Consider the cycle on k(k−2d+1)
2

+ k
2
vertices and hence k(k−2d+1)

2
+ k

2
edges. Let its edge set be

E = {e1,e2,. . . ,ek,. . . ,e k(k−2d+1)
2

,. . . ... . . . . . ,e k(k−2d+1)
2

+ k
2

}.

For 1 ≤ i ≤ k(k−2d+1)
2

+ k
2
, ϕ : E(C) → {1, . . . , k} defined by ϕ(ei) = xi gives k-pseudo edge complete d-coloring of the

cycle C on n(k, d) = k(k−2d+1)
2

+ k
2
vertices. Thus in all cases, we get a k-pseudo edge complete d-coloring of the cycle C

on n(k, d) vertices where n(k, d) = k(k−2d+1)
2

if k is odd k(k−2d+1)
2

+ k
2
if k is even.

Corollary 2.11. Let k and d be positive integers with k ? 2d. Let n(k, d) = k(k−2d+1)
2

or k(k−2d+1)
2

+ k
2
according as k is

odd or even. Then for the cycle C on n(k, d) vertices, ψd
′

s (Cn) = max{k/n(k, d) ≤ n}.

Example 2.12.
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(1) Consider the graph G2
7 in figure 5. An euler tour of G2

7 is given by (1,3,7,5,2,4,7,2,6,3,5,1,6,4,1). Since the line graph

of T ( (ie) L(T) is T itself and so E(T) = V(L(T)) = V(T). Hence the color ith vertex of T is replaced by the color of

ith edge of T. The 7-pseudo edge complete 2-coloring of the cycle corresponding to the above euler tour is given in figure

6.

Figure 5.

Figure 6.

(2) Consider the multigraph G given in figure 7 which is obtained from G2
6 by adding new edges {1, 4}, {2, 5}, {3, 6}. An

euler tour T of G is given by ( 1,4,1,5,2,4,6,3,5,2,6,3,1 ) since the line graph L(T) is T itself the color ith vertex of T

is replaced by the ith edge of T. The 6-pseudo edge complete 2-colorability of C12 corresponding to the above euler tour

given by figure 8.

Figure 7.

Figure 8.

✺
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Proposition 2.13. Let k and d be positive integers with k ≥ 2d. Let

n(k, d) =











k(k−2d+1)
2

, if k is odd;

k(k−2d+1)
2

+ k
2
− 1, if k is even.

Then any path P on n(k, d) + 1 vertices is k-pseudo edge complete d-colorable.

Proof.

Case (I): k is odd

From an eulerian graph Gdk, consider an euler tour containing k(k−2d+1)
2

edges say {x1, x2,. . . , x k(k−2d+1)
2

}. Consider a cycle

C={v1, v2,. . . , v k(k−2d+1)
2

, v1} on k(k−2d+1)
2

edges. From the cycle C, the path P can be constructed with k(k−2d+1)
2

+ 1

vertices where v k(k−2d+1)
2

+1
= v1 and hence k(k−2d+1)

2
edges let it be {e1,e2,. . . ,e k(k−2d+1)

2

}.

For 1 ≤ i ≤ k(k−2d+1)
2

, let ϕ : E(P ) → {1, 2, 3, . . . , k} defined by ϕ(ei) = xi gives k-pseudo edge complete d-coloring on the

path P on n(k, d) + 1 = k(k−2d+1)
2

+ 1 vertices.

Case (II): k is even

With Gdk, add
k
2
new edges

(

{viv k
2
+i}/1 ≤ i ≤ k

2

)

so that the resulting graph G is eulerian in which the euler tour T = {x1,

x2,. . . ,x k(k−2d+1)
2

+ k
2

} containing k(k−2d+1)
2

+ k
2
edges.

From the cycle Cn = {v1, v2, . . . , v k(k−2d+1)
2

+ k
2

, v1} having k(k−2d+1)
2

+ k
2
edges say {e1,e2,. . . ,e k(k−2d+1)

2
+ k

2

} a path Pn on

k(k−2d+1)
2

+ k
2
can be constructed by deleting any new edge which is added (ie) Pn = Cn − e.

For 1 ≤ i ≤ k(k−2d+1)
2

+ k
2
, let ϕ : E(Pn) → {1, 2, 3, . . . , k} defined by ϕ(ei) = xi gives k-pseudo edge complete d-coloring

on the path Pn on n(k, d) + 1 = k(k−2d+1)
2

+ k
2
vertices.

Lemma 2.14. If ψd
′

s (Cp) = n and k ≥ 2 then ψd
′

s (Cp+k) ≥ n.

Proof. Consider the edges of Cp+k labelled as e1,e2,. . . ,ep,. . . ,ep+k assigns to each edge e1,e2,. . . ,ep the color it receives

in a pseudo edge complete d-coloring of Cp using n colors. It is then suffices to assign colors from 1,. . . ,n to the edges

ep+1,. . . ,ep+k so that the result is a valid pseudo edge complete d-coloring. Suppose e1 assigned color α and ep assigned color

β. If k is even, assign α to ep+1,ep+3,. . . ,ep+k−1 and β to ep+2,ep+4. . . ,ep+k. If k is odd, assign α to ep+1,ep+3,. . . ,ep+k−2

and β to ep+2,ep+4. . . ,ep+k−1 and any other color to ep+k. Thus Cp+k is n-pseudo edge complete d-colorable. Hence

ψd
′

s (Cp+k) ≥ n.

Proposition 2.15. Let k and d be positive integers with k ≥ 2d. If n = k(k−2d+1)
2

+ k
2
and k is even. Then ψd

′

s (Cn) =

ψd
′

s (Cn+1) =k.

Proof. By proposition 2.10 and Corollary 2.11, we have proved already, ψd
′

s (Cn) = k if n = k(k−2d+1)
2

+ k
2
and k is even.

Now to prove ψd
′

s (Cn) = ψd
′

s (Cn+1) = k. In the pseudo edge complete d-coloring of the cycle Cn with n = k(k−2d+1)
2

+ k
2

vertices using k colors where k is even, the adjacency between the colors assigned to the edges ei and ej is repeated elsewhere

in the cycle. Now remove the vertex in which the edges ei and ej are incident, and replace it by an edge, colored within k

colors differently from ei and ej , we get a k-pseudo edge complete d-coloring of the cycle Cn+1 so that ψd
′

s (Cn) = ψd
′

s (Cn+1)

= k.

Proposition 2.16. For k ≥ 2d and k is odd, let n = k(k−2d+1)
2

. Then ψd
′

s (Cn) = k but ψd
′

s (Cn−1) = k − 1.

Proof. By proposition 2.10 and Corollary 2.11, we have proved ψd
′

s (Cn) = k if n = k(k−2d+1)
2

and k is odd. Suppose that

for n = k(k−2d+1)
2

, ψd
′

s (Cn+1) = k. Since n + 1 = k(k−2d+1)
2

+ 1, n − 1 colors appears k−2d+1
2

times, and one color say α

appears 1+ k−2d+1
2

times. Then α must repeat an adjacency to some other color, but there is no color available which could

be adjacency to α. Thus ψd
′

s (Cn) = k − 1. Hence the result.

6
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Definition 2.17. If ψd
′

s (G) = k and ψd
′

s (G− e) < k for every edge e ∈ E(G) then G is called k-edge d-minimal.

Example 2.18.

1. Any cycle Cn where n = k(k−2d+1)
2

where k ≥ 2d and k is odd is k-edge d-minimal whereas any cycle Cn where

n = k(k−2d+1)
2

+ k
2
and k is even is not k-edge d-minimal since ψd

′

s (Cn) = ψd
′

s (Cn − e) = k.

2. Any star graph K1,q where q ≥ 2d is q-edge d-minimal since χd
′

s (K1,q) = q and χd
′

s (K1,q − e) = q − 1.

Lemma 2.19. For every k, there is a graph G and an independent set S of points of G such that ψd
′

s (G)−ψd
′

s (G−S) ≥ k.

Proof. Let n ≥ k be even. Then if p = n(n−2d+1)
2

+ n
2

is even then the cycle Cp is bipartite by the theorem, ” A

graph is bipartite if and only if all of its cycles are of even length”. The points u1,u3,. . . ,up−1 form an independent set

of S such that Cp − S is totally disconnected. Therefore the induced subgraph <Cp − S> is an empty graph. Hence

ψd
′

s (Cp)−ψd
′

s < Cp − S >= ψd
′

s (Cp) = n by proposition 2.10. Therefore ψd
′

s (Cp)−ψd
′

s (Cp − S) = n ≥ k. Hence the result.

Let Pp be the path with p points.

Lemma 2.20. If r > s, then ψd
′

s (Pr) ≥ ψd
′

s (Ps).

Proof. It is sufficient to prove ψd
′

s (Pr+1) ≥ ψd
′

s (Pr). Let u1 be the end point of Pr+1 and let u3 be at distance 2 from u1,

then identifying u1 with u3 defines a homomorphism from Pr+1 to Pr. If ψd
′

s (Pr) = n then Pr+1 defines a n-pseudo edge

complete d-coloring so that ψd
′

s (Pr+1) ≥ n = ψd
′

s (Pr).

Proposition 2.21. For n ≥ 2d, let p = n(n−2d+1)
2

+ n
2
if n is even, ψd

′

s (Pp−1) < ψd
′

s (Pp) = n. If p = n(n−2d+1)
2

and n is

odd, ψd
′

s (Pp) < ψd
′

s (Pp+1) = n.

Proof. We first examine the equalities, if n is even then ψd
′

s (Cp) = n by proposition 2.10 and some adjacency is repeated.

Thus Pp = Cp − x where x is any new edge that is added in defining n-pseudo complete d-coloring of Cp then ψd
′

s (Pp) =

n. If n is odd, we obtain a n-pseudo edge complete d-coloring of Pp+1 from one for Cp by removing some point u, adjacent

to the points v1 and v2 and then adding new points u1, u2 and the lines u1v1and u2v2.

By assigning to the lines u1v1, u2v2 the color assigned to the lines uv1 and uv2, we obtain a n-pseudo edge complete d-

coloring for Pp+1. For the inequality, in the even case, we note that the n pseudo edge complete d-coloring of Pp−1 give rise

to one for Cp−1 if the end lines of the path colored differently, and one for Cp−2 if they are colored the same. Each of these

would violate the result of proposition 2.15 when n is odd, Pp has only n(n−2d+1)
2

− 1 lines, whereas atleast n(n−2d+1)
2

lines

would be required if the graph were to have a n-pseudo edge complete d-coloring.

3. Upper Bounds for Pseudo d-achromatic Index of Graphs

Hung-Lin Fu in his paper [2] gave another approach to the pseudo achromatic index and achromatic index of a graph G

and studied upper bounds for them. Now I define pseudo d-achromatic index ψd
′

s (G), d-achromatic index ψd
′

(G) in terms

of decomposition graphs.

Let G be a (V, E) graph. A collection D = {E1,E2,. . . ,En } of non empty subsets of E is a decomposition of G, if E is the

disjoint union of E1,E2,. . . ,En.

If every set in the decomposition D of G is a matching, we say D is a proper decomposition of G. The decomposition graph

D(G) is defined as follows.

1. V (D(G)) = D and

✼
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2. For i 6= j, {Ei, Ej} ? E(D(G)) if and only if V (Ei)G ∩ V (Ej)G 6= ϕ where (Ei)G is the edge induced subgraph of G.

If D(G) = Gdk where k ≥ 2d, then we say the decomposition of G is complete with respect to the (k, d)-edge coloring of G.

A pseudo d-achromatic edge k coloring of G is a complete decomposition of G into D = {E1,E2,. . . ,Ek} with respect to (k,

d)-edge coloring of G. A proper pseudo 2-achromatic edge 7-coloring of G is shown in figure 6 which is a proper complete

decomposition of G into D = { E1 = {e1, e12}, E2 = {e5, e8}, E3 = {e2, e10}, E4 = {e6, e14}, E5 = {e4, e11}, E6 = {e9,

e13}, E7 = {e3, e7} } having colors 1,2,3,4,5,6,7 respectively with respect to (7, 2)-edge coloring of G.

Figure 9.

Definition 3.1. The pseudo d-achromatic index ψd
′

s (G) of a graph G is largest k such that G has a pseudo d-achromatic

edge k-coloring of G. Now ψd
′

(G) is the largest m such that G has a proper complete decomposition of G with respect to the

(m, d)-edge coloring of G where as χd
′

(G) is the smallest m such that G has a proper complete decomposition of G with

respect to the (m, d)-edge coloring of G. The above figure 9 shows that χ2
′

(G) = ψ2
′

(G) = 7.

The following lemmas are easy to check.

Lemma 3.2. Let G be a graph. Then χd
′

(G) ≤ ψd
′

(G) ≤ ψd
′

s (G).

Lemma 3.3. Let H be a subgraph of G. Then ψd
′

s (H) ≤ ψd
′

s (G).

Theorem 3.4. For any graph G, ψd
′

(G) ≤ ψd
′

s (G) ≤ ⌊ e(G)+(2d−1)χd
′

(G)
2d

⌋.

Proof. By lemma 3.3, it suffices to prove ψd
′

s (G) ≤ ⌊ e(G)+(2d−1)χd
′

(G)
2d

⌋. Let χd
′

(G) = n. Then there exists a proper

complete decomposition D = { E1,E2,. . . . . . . . . .. . . . . . .,En } where n ≥ 2d, with respect to (n, d)-edge coloring of G. Let

ψd
′

s (G) = m and D
′

= {E1, E2,. . . ,Em } where m ≥ 2d be a complete decomposition of G with respect to (m, d)-edge

coloring of G. It is clear that for 1 ≤ i 6= j ≤ m, Fi ∪ Fj 6⊂ Ek where k = 1, 2, 3, . . . , n.

Hence atleast m-n sets of D
′

contains atleast 2d edges from different sets of D. Then, 2d(m − n) + n ≤ e(G). Therefore,

2dm−2dn+n ≤ e(G) where e(G) is the number of lines of G. Hence, 2dm ≤ e(G)+(2d−1)n which implies,m ≤ ⌊ e(G)+(2d−1)n
2d

⌋

so that ψd
′

(G) ≤ ψd
′

s (G) ≤ ⌊ e(G)+(2d−1)χd
′

(G)
2d

⌋.

Example 3.5. Consider a three dimensional hyper cube G, second image of figure 10 shows that χ2
′

(G) = ψ2
′

(G) = 6

where as ψ2
′

s (G) = 7 as shown in second image of figure 10.
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In second image of figure 10, the complete decomposition of G in D = { E1 = {e1}, E2 = {e2}, E3 = {e9}, E4 = {e9, e12},

E5 = {e4, e6}, E6 = {e3, e5}, E7 = {e7, e11,e8} } having colors 1, 2, 3, 4, 5, 6, 7 respectively. Here also D(G) = G2
7 so

that

ψ2
′

s (G) ≥ 7. (3)

Figure 10.

From Theorem 3.4, second image of figure 10 shows that

ψ2
′

s (G) ≤ ⌊
12 + 36

4
⌋ ≤ ⌊

30

4
⌋ = 7. (4)

(3) and (4) implies that ψ2
′

s (G) = 7.

Remark 3.6.

(A) By considering the star graph K1,q (that is the complete bipartite graph) with bipartition graph (X, Y) of the vertex set

such that |X| = 1 and |Y | = q.

It has been proved χd
′

(K1,q) = q and ψd
′

s (K1,q) = ⌊ q+3q
4

⌋ = q for every positive integer q ≥ 2d (from Theorem 3.4).

This shows that the upper bound in the Theorem 3.4 is best possible.

(B) Even though the upper bound obtained in Theorem 3.4 is the best possible, the difference between ψd
′

s (G) and

⌊ e(G)+(2d−1)ψd
′

(G)
2d

⌋ can be bigger than any positive integer. For example, consider the double star Sp,q where p ≥ q ≥ 2d

as described in figure 11 (that is K1,p and K1,q which share an edge). Then ψd
′

(Sp,q) = p, e(G) = p + q - 1 and

ψd
′

s (Sp,q) = p. Hence the difference between ψd
′

s (G) and ⌊ e(G)+(2d−1)ψd
′

(G)
2d

⌋ is ⌊ q−1
2d

⌋ and can be made arbitrarily large

by suitable choices of p, q and d.

Figure 11.

Another upper bound can be obtained in a different way.

✾
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Theorem 3.7. Let G be a graph of order p and size e, with maximum degree ∆, ∆ ≥ 2d. Then, ψd
′

s (G) ≤

max
1≤k≤⌊ p

2d
⌋

(

min ⌊ p∆
2k

⌋, 2k(∆− 1) + 2d− 1
)

.

Proof. Let f be a pseudo d-complete edge ψd
′

s (G)-coloring of G. By Vizings Theorem, and by Lemma 3.3 we get ψd
′

s (G) ≥

∆d. Suppose that the smallest color class S of f consists of k edges. Then 1 ≤ k ≤ ⌊ e
∆d

⌋. Since the edge induced subgraph

< S >G has atmost 2k vertices and the degree of each vertex is atmost ∆. The number of edges not in S but incident with

some edges in S is atmost 2k(∆− 1).

Hence, ψd
′

s (G) ≤ 2k(∆ − 1) + 2d − 1. On the other hand, since each color class consists of atleast k edges, the edge

set E(G) can be decomposed into atmost ⌊ p∆
2k

⌋ color classes. Therefore ψd
′

s (G) ≤ ⌊ p∆
2k

⌋. Hence ψd
′

s (G) ≤ min{⌊ p∆
2k

⌋,

2k(∆ − 1) + 2d − 1} and ψd
′

s (G) ≤ max
1≤k≤⌊ e

∆d
⌋

(

min{⌊ p∆
2k

⌋, 2k(∆− 1) + 2d− 1}
)

. Since ⌊ p∆
2k

⌋ is non increasing as a function

of k and ⌊ p∆
2k

⌋ ≤ 2k(∆− 1) + 2d− 1 if k ≥ ⌊ p
2d
⌋. Hence we have, ψd

′

s (G) ≤ max
1≤k≤⌊ p

2d
⌋

(

min{⌊ p?
2k
⌋, 2k(∆− 1) + 2d− 1}

)

.

To see the upper bound in the above theorem is best possible, let us consider the graphs Pk and Ck the path and the cycle

of order k respectively. We note that ψd
′

(G) ≤ ψd
′

s (G) ≤ m(G) where m(G) = max{n/n.⌈ n−2d+1
2(∆(G)−1)

⌉ ≤ e(G)} and it easy

to check that m(G) is always larger than the upper bound in Theorem 3.7. The upper bound is appropriate in this case.

The following result is known from Proposition 2.15, 2.16 and 2.21.

Proposition 3.8. Let m = max{n/n.⌈n−2d+1
2

⌉ ≤ k}. Then

1. For k ≥ 2d,

ψd
′

s (Pk+1) =











m− 1, if m is odd and k = m.⌈m−2d+1
2

⌉;

m, otherwise.

2. For k ≥ 2d,

ψd
′

s (Ck) =











m− 1, if m is odd and k = m.⌈m−2d+1
2

⌉+ 1;

m, otherwise.

Corollary 3.9. For every k ≥ 2d, ψd
′

s (Ck) = m where m = max{n/n.⌈n−2d+1
2

⌉ ≤ k}.

Proof. We need only to show there is a pseudo d-achromatic edge m coloring of Ck for the case when m is odd and

k = m.⌈m−2d+1
2

⌉ + 1. In that case, there is pseudo d-achromatic edge m coloring for the path Pk+1 by identifying the first

and last vertices, we get pseudo d-achromatic edge m-coloring of the cycle Ck. Hence the result. Obviously, by proposition

3.8 and corollary 3.9, the upper bound obtained in theorem 3.7 is the best possible.
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