Volume 1, Issue 4 (2015), 25-31.

ISSN: 2394-5745

Available Online: http://ijcrst.in/

International Journal of Current Research in Science and Technology

Contra q^* -continuity and Separation Axioms

Research Article

S. Rose Mary¹, A. Arivu Chelvam² and O. Ravi³*

- 1 Department of Mathematics, Fatima College, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, Mannar Thirumalai Naickar College, Madurai, Tamil Nadu, India.
- 3 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

Abstract: The main results of this paper are several properties concerning contra g*-continuous maps. Furthermore, the relationships between the contra g*-continuity and some topological maps as well as Separation axioms are investigated.

Keywords: Contra g-continuity, contra g*-continuity, g*-connected space.

© JS Publication.

1. Introduction and Preliminaries

In the literature there are many types of continuities introduced by various authors. Quite recently, Jafari and Noiri introduced and investigated the notions of contra-precontinuity, contra- α -continuity, contra-g-continuity and contra-super-continuity as a continuation of research done by Dontchev [8], and Dontchev and Noiri [7] on the interesting notions of contra-continuity and contra-semi-continuity.

This paper devotes to introduce and investigate a new class of maps called contra g*-continuous maps which are weaker than contra-continuity and stronger than contra g-continuity, contra sg-continuity and contra gs-continuity. The main results of this paper are that several properties concerning contra g*-continuous maps. Furthermore, the relationships between the contra g*-continuity and some topological maps as well as Separation axioms are investigated.

Throughout the paper, (X, τ) , (Y, σ) and (Z, ρ) (briefly X, Y and Z) represent topological spaces on which no separation axioms are assumed unless or otherwise mentioned. For a subset A of a space X, cl(A), int(A) and cl(A) denotes the closure of A, the interior of A and the complement of A respectively. We recall the following definitions which are useful in the sequel.

Definition 1.1. A subset A of a space X is called

```
1. a semi-open [13] if A \subseteq cl(int(A));
```

2. a preopen [15] if $A \subseteq int(cl(A))$;

3. an α -open [18] if $A \subseteq int(cl(int(A)))$ and

4. a semi-closed [5] (resp. an α -closed [16], a preclosed [15]) if C(A) is a semi-open (resp. an α -open, a preopen).

^{*} E-mail: siinqam@yahoo.com

The semi-closure (resp. α -closure, preclosure) of a subset A of X, denoted by scl(A) (resp. $\alpha cl(A)$, pcl(A)), is the intersection of all semi-closed (resp. α -closed, preclosed) sets containing A.

Definition 1.2. A subset A of a space X is called

```
1. g-closed [12] if cl(A) \subseteq U whenever A \subseteq U and U is open in X;
```

```
2. sg-closed [3] if scl(A) \subseteq U whenever A \subseteq U and U is semi-open in X;
```

```
3. gs-closed [1] if scl(A) \subseteq U whenever A \subseteq U and U is open in X;
```

```
4. \alpha g-closed [14] if \alpha cl(A) \subseteq U whenever A \subseteq U and U is open in X;
```

5.
$$g^*$$
-closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X and

g-open [12] (resp. sg-open [3], gs-open [1], αg-open [14] and g*-open [19]) if C(A) is g-closed (resp. sg-closed, gs-closed, αg-closed and g*-closed).

Definition 1.3. A map $f: X \to Y$ is said to be

```
1. contra-continuous [8] if f^{-1}(V) is closed in X for every open set V of Y;
```

```
2. contra semi-continuous [7] if f^{-1}(V) is semi-closed in X for every open set V of Y;
```

3. contra
$$\alpha$$
-continuous [10] if $f^{-1}(V)$ is α -closed in X for every open set V of Y ;

4. contra g-continuous [11] if
$$f^{-1}(V)$$
 is g-closed in X for every open set V of Y;

5. contra sg-continuous [7] if
$$f^{-1}(V)$$
 is sg-closed in X for every open set V of Y;

6. contra gs-continuous [7] if
$$f^{-1}(V)$$
 is gs-closed in X for every open set V of Y;

7.
$$g^*$$
-irresolute [19] if $f^{-1}(V)$ is g^* -closed in X for every g^* -closed set V of Y;

8. gc-irresolute [2] if
$$f^{-1}(V)$$
 is g-closed in X for every g-closed set V of Y;

9.
$$\alpha g$$
-irresolute [14] if $f^{-1}(V)$ is αg -closed in X for every αg -closed set V of Y ;

10. gs-irresolute [4] if
$$f^{-1}(V)$$
 is gs-closed in X for every gs-closed set V of Y;

11. pre
$$g^*$$
-closed [19] if $f(V)$ is g^* -closed in Y for every g^* -closed set V of X;

12.
$$g^*$$
-continuous [19] if $f^{-1}(V)$ is g^* -closed in X for every closed set V of Y and

13. preclosed [9] if f(V) is preclosed in Y for every closed set V of X.

Theorem 1.4. [19] In a topological space X, the followings hold:

1. Every closed set is g^* -closed.

2. every g*-closed set is g-closed and hence gs-closed.

The converses of the above statements are not true in general.

Definition 1.5. A space X is called

- 1. an T_c space if every gs-closed set in it is g^* -closed [19];
- 2. an $_{\alpha}T_{c}$ space if every αg -closed set in it is g^{*} -closed [19] and
- 3. T_b space if every gs-closed set in it is closed [6].

Definition 1.6. [17] A space X is called a locally indiscrete if every open set in it is closed.

2. Properties of contra g*-continuous maps

Definition 2.1. A map $f: X \to Y$ is called contra g^* -continuous if $f^{-1}(V)$ is g^* -closed set of X for every open set V of Y.

Theorem 2.2.

- 1. Every contra-continuous map is contra g^* -continuous.
- 2. Every contra g*-continuous map is contra g-continuous and hence contra gs-continuous.

The converses of the above Theorem are not true as per the following examples.

Example 2.3. Let $X = Y = \{a, b, c\}$. Let $\tau = \{\emptyset, X, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{a, c\}\}\}$. Let $f: X \to Y$ be the identity map. Then f is contra g^* -continuous map but it is not contra-continuous.

Example 2.4. Let $X = Y = \{a, b, c\}$. Let $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\emptyset, Y, \{b\}\}$. Let $f: X \to Y$ be the identity map. Then f is contra g-continuous map and hence contra g-continuous map but it is not contra g-continuous.

Theorem 2.5. The composition of two contra g^* -continuous maps need not be contra g^* -continuous map.

The following example supports the above theorem.

Example 2.6. Let $X = Y = Z = \{a, b, c\}$. Let $\tau = \{\emptyset, X, \{a, b\}\}$, $\sigma = \{\emptyset, Y, \{a, c\}\}$ and $\rho = \{\emptyset, Z, \{b\}\}$. Let $f: X \to Y$ be the identity map and $g: Y \to Z$ be the identity map. Then f is contra g^* -continuous map and g is contra g^* -continuous map. But their composition g of: $X \to Z$ is not contra g^* -continuous.

Theorem 2.7. Let $f:X \to Y$ be a map. Then the following statements are equivalent.

- 1. f is contra g^* -continuous.
- 2. The inverse image of each open set in Y is g^* -closed in X.
- 3. The inverse image of each closed set in Y is g^* -open in X.

Proof. (1) \Rightarrow (2): Let G be any open set in Y. By the assumption of (1), $f^{-1}(G)$ is g^* -closed in X.

- (2) \Rightarrow (3): Let G be any closed set in Y. Then Y G is open set in Y. By the assumption of (2), $f^{-1}(Y G) = X f^{-1}(G)$ is g^* -closed in X. Therefore $f^{-1}(G)$ is g^* -open in X.
- $(3) \Rightarrow (1)$: Let G be any open set in Y. Then Y G is closed in Y. By the assumption of (3), $f^{-1}(Y G) = X f^{-1}(G)$ is g^* -open in X. Therefore $f^{-1}(G)$ is g^* -closed in X. Thus f is contra g^* -continuous map.

Theorem 2.8. Let $f: X \to Y$ be surjective, g^* -irresolute and pre g^* -closed, and $g: Y \to Z$ be any map. Then g of $f: X \to Z$ is contra g^* -continuous if and only if g is contra g^* -continuous.

Proof. Let g o f: X \to Z be contra g*-continuous map. Let F be an open subset of Z. Then (g o f)⁻¹(F) = $f^{-1}(g^{-1}(F))$ is a g*-closed subset of X. Since f is pre g*-closed, $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is g*-closed in Y. Thus g is contra g*-continuous map.

Conversely, let g: Y \rightarrow Z be contra g*-continuous map. Let G be an open subset of Z. Since g is contra g*-continuous, $g^{-1}(G)$ is g*-closed in Y. Since f is g*-irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is g*-closed in X. Hence g of is contra g*-continuous map.

3. Relationship with other maps

Theorem 3.1. If $f: X \to Y$ is g^* -irresolute map and $g: Y \to Z$ is contra-continuous map, then the composition gof: $X \to Z$ is contra g^* -continuous map.

Proof. Let G be an open set in Z. Since g is contra-continuous, $g^{-1}(G)$ is closed in Y. It implies that $g^{-1}(G)$ is g^* -closed in Y. Since f is g^* -irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is g^* -closed in X. Therefore g of is contra g^* -continuous map. \square

Corollary 3.2. If $f: X \to Y$ is g^* -irresolute map and $g: Y \to Z$ is contra g^* -continuous map, then g of $f: X \to Z$ is contra g^* -continuous map.

Theorem 3.3. If $f: X \to Y$ is gc-irresolute map and $g: Y \to Z$ is contra g^* -continuous map, then g of $f: X \to Z$ is contra g-continuous map.

Proof. Let G be an open set in Z. Since g is contra g^* -continuous map, $g^{-1}(G)$ is g^* -closed in Y. It implies that g-closed in Y. Since f is gc-irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is g-closed in X. Thus g of is contra g-continuous map.

Corollary 3.4. If $f: X \to Y$ is gs-irresolute map and $g: Y \to Z$ is contra g^* -continuous map, then g of $f: X \to Z$ is contra g-continuous map.

Theorem 3.5. Let $\{X_{\lambda} \mid \lambda \in \Omega\}$ be any family of topological spaces. If $f: X \to \Pi$ X_{λ} is a contra g^* -continuous map, then Pr_{λ} of $f: X \to X_{\lambda}$ is contra g^* -continuous for each $\lambda \in \Omega$, where Pr_{λ} is the projection of ΠX_{λ} onto X_{λ} .

Proof. We shall consider a fixed $\lambda \in \Omega$. Suppose U_{λ} is an arbitrary open set in X_{λ} . Then $\Pr_{\lambda}^{-1}(U_{\lambda})$ is open in ΠX_{λ} . Since f is contra g*-continuous, we have by definition $f^{-1}(\Pr_{\lambda}^{-1}(U_{\lambda})) = (\Pr_{\lambda} \text{ o f})^{-1}(U_{\lambda})$ is g*-closed in X. Therefore \Pr_{λ} o f is contra g*-continuous.

Theorem 3.6. Let $f: X \to Y$ be a map and $g: X \to X \times Y$ the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contra g^* -continuous, then f is contra g^* -continuous.

Proof. Let U be an open set in Y. Then X × U is an open set in X × Y. It follows from Theorem 2.7 that $f^{-1}(U) = g^{-1}(X \times U)$ is g^* -closed in X. Thus, f is contra g^* -continuous.

Definition 3.7. A space X is called $_{\alpha}T_{1/2}^{*}$ if every g^{*} -closed set is α -closed.

4. Relation with Separation Axioms

Theorem 4.1. Let $f: X \to Y$ be a contra g^* -continuous map. If X is an ${}_{\alpha}T_{1/2}^*$ space, then f is contra α -continuous map.

Proof. Let V be an open set of Y. Since f is contra g*-continuous, $f^{-1}(V)$ is a g*-closed set of X. Since X is an $_{\alpha}T_{1/2}^{*}$ space, $f^{-1}(V)$ is an α-closed set of X. Therefore f is a contra α-continuous map.

Theorem 4.2. Let $f: X \to Y$ be a contra semi-continuous map. If X is an T_c space, then f is contra g^* -continuous map. *Proof.* Let V be an open set of Y. Since f is contra semi-continuous, $f^{-1}(V)$ is a semi-closed set of X and hence gs-closed in X. Since X is an T_c space, $f^{-1}(V)$ is a g^* -closed set of X. Therefore f is a contra g^* -continuous map. **Theorem 4.3.** Let $f: X \to Y$ be a contra α -continuous map. If X is an αT_c space, then f is contra g^* -continuous map. *Proof.* Let V be an open set of Y. Since f is contra α -continuous, $f^{-1}(V)$ is an α -closed set of X and hence α g-closed in X. Since X is an ${}_{\alpha}T_c$ space, $f^{-1}(V)$ is a g*-closed set of X. Therefore f is contra g*-continuous map. **Theorem 4.4.** Let $f: X \to Y$ be a contra gs-continuous map. If X is ${}_aT_b$ space, then f is contra g^* -continuous map. *Proof.* Let V be an open set of Y. Since f is contra gs-continuous, $f^{-1}(V)$ is gs-closed set of X. Since X is T_b space, it is a closed set of X. It implies that $f^{-1}(V)$ is g^* -closed set of X. Therefore f is a contra g^* -continuous map. **Theorem 4.5.** Let $f: X \to Y$ be a surjective, preclosed, contra g^* -continuous map and X be T_b space, then Y is locally in discrete.*Proof.* Suppose V is open set in Y. By hypothesis, f is contra g^* -continuous map, $f^{-1}(V)$ is g^* -closed and hence gs-closed in X. Since X is T_b space, $f^{-1}(V)$ is closed in X. Since f is preclosed, V is preclosed in Y. Now we have cl(V) = cl(int(V)) \subseteq V. This means that V is closed in Y. Thus Y is locally indiscrete. **Theorem 4.6.** Let X and Z be any topological spaces and Y be T_b space. If $f: X \to Y$ is g^* -continuous map and $g: Y \to Z$ is contra gs-continuous map, then g o f: $X \rightarrow Z$ is contra g^* -continuous map. *Proof.* Let G be an open set in Z. Since g is contra gs-continuous, $g^{-1}(G)$ is gs-closed in Y. But Y is T_b space, $g^{-1}(G)$ is closed in Y. Since f is g^* -continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is g^* -closed in X. Therefore gof is contra g^* -continuous map. Corollary 4.7. Let X and Z be any topological spaces and Y be T_b space. If $f: X \to Y$ is g^* -irresolute map and $g: Y \to Z$ is contra gs-continuous map, then g o f: $X \to Z$ is contra g^* -continuous map. **Theorem 4.8.** Let X and Z be any topological spaces and Y be a T_c space. If $f: X \to Y$ is g^* -irresolute map and $g: Y \to Y$ Z is contra-continuous map, then g o f: $X \to Z$ is contra g^* -continuous map. *Proof.* Let G be an open set in Z. Since g is contra-continuous, $g^{-1}(G)$ is closed and hence gs-closed in Y. But Y is a T_c space, $g^{-1}(G)$ is g^* -closed in Y. Since f is g^* -irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is g^* -closed in X. Therefore g of is contra g*-continuous map. **Corollary 4.9.** Let X and Z be any topological spaces and Y be an $_{\alpha}T_{c}$ space. If $f: X \to Y$ is g^{*} -irresolute map and g: Y \rightarrow Z is contra-continuous map, then g o f: X \rightarrow Z is contra g*-continuous map. **Definition 4.10.** A space X is called q^* -connected provided that X is not the union of two disjoint non-empty q^* -open sets. **Theorem 4.11.** If $f: X \to Y$ is contra g^* -continuous surjection and X is g^* -connected, then Y is connected. *Proof.* Suppose that Y is not connected space. There exist non-empty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$ V_2 . Therefore V_1 and V_2 are clopen in Y. Since f is contra g^* -continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are g^* -open in X. Moreover, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are non-empty disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$. This shows that X is not g^* -connected. This

contradicts that Y is not connected assumed. Hence Y is connected.

Definition 4.12. A space X is said to be

- 1. g*-compact (strongly S-closed [8]) if every g*-open (respectively closed) cover of X has a finite subcover;
- countably g*-compact (strongly countably S-closed) if every countable cover of X by g*-open (respectively closed) sets
 has a finite subcover;
- 3. g^* -Lindelof (strongly S- Lindelof) if every g^* -open (respectively closed) cover of X has a countable subcover.

Theorem 4.13. The contra g^* -continuous images of g^* -compact (g^* -Lindelof, countably g^* -compact) spaces are strongly S-closed (respectively strongly S- Lindelof, strongly countably S-closed).

Proof. Suppose that $f: X \to Y$ is a contra g^* -continuous surjection. Let $\{V_\alpha : \alpha \in I\}$ be any closed cover of Y. Since f is contra g^* -continuous, then $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is an g^* -open cover of X and hence there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Therefore, we have $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ and Y is strongly S-closed.

The other proofs can be obtained similarly.

Definition 4.14. A space X is said to be

- 1. g^* -closed-compact if every g^* -closed cover of X has a finite subcover;
- 2. countably q^* -closed-compact if every countable cover of X by q^* -closed sets has a finite subcover;
- 3. g^* -closed-Lindelof if every g^* -closed cover of X has a countable subcover.

Theorem 4.15. The contra g^* -continuous images of g^* -closed-compact (g^* -closed-Lindelof, countably g^* -closed-compact) spaces are compact (respectively Lindelof, countably compact).

Proof. Suppose that $f: X \to Y$ is a contra g^* -continuous surjection. Let $\{V_\alpha : \alpha \in I\}$ be any open cover of Y. Since f is contra g^* -continuous, then $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is a g^* -closed cover of X. Since X is g^* -closed-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Therefore, we have $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ and Y is compact.

The other proofs can be obtained similarly.

References

- [1] S.P.Arya and T.M.Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- [2] K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math., 12(1991), 5-13.
- [3] P.Bhattacharyya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [4] M.Caldas, Semi-generalized continuous maps in topological spaces, Portugaliae Mathematica., 52(4)(1995), 339-407.
- [5] S.G.Crossley and S.K.Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [6] R.Devi, K.Balachandran and H.Maki, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Kochi Univ. Ser. A. Math., 14(1993), 41-54.
- [7] J.Dontchev and T.Noiri, Contra-semicontinuous functions, Math Pannonica, 10(1999), 159-168.
- [8] J.Dontchev, Contra-continuous functions and strongly S-closed spaces, Int. J Math. Math. Sci., 192(1996), 303-310.
- [9] S.N.El-Deeb, I.A.Hasanein, A.S.Mashhour and T.Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27(1983), 311-315.

- [10] S.Jafari and T.Noiri, Contra α-continuous functions between topological spaces, Iranian Int. J. Sci., 2(2)(2001), 153-167.
- [11] S.Jafari, M.Caldas, T.Noiri and M.Simoes, A new generalization of contra continuity via Levine's g-closed sets, Chaos, Solitons and Fractals, 32(2007), 1597-1603.
- [12] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [13] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [14] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [15] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [16] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar., 41(1983), 213-218
- [17] T.Nieminen, On Ultra pseudocompact and related topics, Ann. Acad. Sci. Fenn. Ser. A.I Math. 3(1977), 185-205.
- [18] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [19] M.K.R.S.Veera Kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 21(2000), 1-19.