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1. Introduction

We consider only finite, connected simple graph G with vertex set V (G) and edge set E(G). The degree dG(v) of a vertex v

is the number vertices adjacent to v. We refer to [1] for undefined term and notation. Chemical Graph Theory is a branch

of Mathematical Chemistry which has an important effect on the development of Chemical Sciences. Several topological

indices have been considered in Theoretical Chemistry, see [2]. In [3], Albertson introduced the irregularity index as

Alb(G) =
∑

uv∈E(G)

|dG(u)− dG(v)| (1)

Motivated by the definition of the irregularity index, (now we call as minus index denoted by Mi(G)), we introduce the

modified minus index, minus connectivity index, reciprocal minus connectivity index and general minus index of a graph as

follows. The modified minus index of a graph G is defined as

m
Mi(G) =

∑

uv∈E(G)

1

|dG(u)− dG(v)|
(2)

The minus connectivity index of a graph G is defined as

Mic(G) =
∑

uv∈E(G)

1
√

|dG(u)− dG(v)|
(3)

The reciprocal minus, index of a graph G is defined as

RMic(G) =
∑

uv∈E(G)

√

|dG(u)− dG(v)| (4)
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The general minus index of a graph G is defined as

M
a

i (G) =
∑

uv∈E(G)

[|dG(u)− dG(v)|]a (5)

where a is a real number. Recently, some new topological indices were studied, for example, in [4–20]. A study of titania

nanotubes has received much attention in Mathematical and Chemical literature (see [21–23]). In this paper, we compute

the minus index, modified minus index, minus connectivity index, reciprocal minus connectivity index and general minus

index for titania nanotuabes.

2. Titania Nanotubes

Titania is studied in material science. The titania nanotubes denoted by T iO2[m,n] for any m,n ∈ N , in which m is the

number of octagons C8 in a row and n is the number of octagons C8 in a column. The graph of T iO2[m,n] is presented in

Figure 1.

Figure 1: The graph of T iO2[m,n] nanotube

Let G be the graph of titania nanotube T iO2[m,n] with 6n(m + 1) vertices and 10mn + 8n edges. In G, by calculation,

there are four types of edges based on the degree of end vertices of each edge as given in Table 1.

dG(u), dG(v)\uv ∈ E(G) (2,4) (2, 5) (3, 4) (3, 5)

Number of edges 6n 4mn+ 2n 2n 6mn− 2n

Table 1: Edge partition of T iO2[m,n]

In the following theorem, we compute the minus index of titania nanotubes T iO2[m,n].

Theorem 2.1. The minus index of T iO2[m,n] nanotubes is Mi(T iO2) = 24mn+ 16n.

Proof. Let G = T iO2[m,n] be the graph of titania nanotube. By using equation (1) and Table 1, we have

Mi(T iO2) =
∑

uv∈E(G)

|dG(u)− dG(v)|

= |2− 4|6n+ |2− 5|(4mn+ 2n) + |3− 4|2n+ |3− 5|(6mn− 2n)

= 24mn+ 16n.
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In the following theorem, we compute the modified minus index of titania nanotubes T iO2[m,n].

Theorem 2.2. The modified minus index of T iO2[m,n] nanotubes is

m
Mi(T iO2) =

13

3
mn+

14

3
n.

Proof. Let G = T iO2[m,n] be the graph of titania nanotube. By using equation (1) and Table 1, we obtain

m
Mi(T iO2) =

∑

uv∈E(G)

1

|dG(u)− dG(v)|

=

(

1

|2− 4|

)

6n+

(

1

|2− 5|

)

(4mn+ 2n) +

(

1

|3− 4|

)

2n+

(

1

|3− 5|

)

(6mn− 2n)

=
13

3
mn+

14

3
n.

In the following theorem, we determine the minus connectivity index of titania nanotubes T iO2[m,n].

Theorem 2.3. The minus connectivity index of T iO2[m,n] nanotubes is

Mic(G) =

(

4√
3
+

6√
2

)

mn+

(

4√
2
+

2√
3
+ 2

)

n.

Proof. Let G = T iO2[m,n] be the graph of titania nanotube. By using equation (3) and Table 1, we deduce

Mic(T iO2) =
∑

uv∈E(G)

1
√

|dG(u)− dG(v)|

=

(

1
√

|2− 4|

)

6n+

(

1
√

|2− 5|

)

(4mn+ 2n) +

(

1
√

|3− 4|

)

2n+

(

1
√

|3− 5|

)

(6mn− 2n)

=

(

4√
3
+

6√
2

)

mn+

(

4√
2
+

2√
3
+ 2

)

n.

In the following theorem, we determine the reciprocal minus connectivity index of titania nanotubes T iO2[m,n].

Theorem 2.4. The reciprocal minus connectivity index of T iO2[m,n] nanotubes is

RMic(T iO2) =
(

4
√
3 + 6

√
2
)

mn+
(

4
√
2 +

√
3 + 2

)

n.

Proof. Let G = T iO2[m,n] be the graph of titania nanotube. By using equation (4) and Table 1, we deduce

RMic(T iO2) =
∑

uv∈E(G)

√

|dG(u)− dG(v)|

=
√

|2− 4|6n+
√

|2− 5| (4mn+ 2n) +
√

|3− 4|2n+
√

|3− 5| (6mn− 2n)

= (4
√
3 + 6

√

2)mn+
(

4
√
2 +

√
3 + 2

)

n.

In the following theorem, we complete the general minus index of titania nanotubes T iO2[m,n].

Theorem 2.5. The general minus index of T iO2[m,n] nanotubes is

M
a

i (T iO2) = (4× 3a + 6× 2a)mn+ (4× 2a + 2× 3a + 2)n.

✶✶
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Proof. Let G = T iO2[m,n] be the graph of titania nanotube. By using equation (5) and Table 1, we obtain

M
a

i (T iO2) =
∑

uv∈E(G)

[|dG(u)− dG(v)|]a

= (|2− 4|)a 6n+ (|2− 5|)a (4mn+ 2n) + (|3− 4|)a 2n+ (|3− 5|)a (6mn− 2n)

= (4× 3a + 6× 2a)mn+ (4× 2a + 2× 3a + 2)n.
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