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1. Introduction

Let G be a finite, simple, connected graph with vertex set V (G) and edge set E(G). The degree dG(v) of a vertex v is the

number of vertices adjacent to v. The degree of an edge e = uv in G is defined by dG(E) = dG(u) + dG(v) − 2. The line

graph L(G) of G is the graph whose vertex set corresponds to the edges of G such that two vertices of L(G) are adjacent if

the corresponding edges of G are adjacent. Any undefined term may be found in Kulli [1]. A molecular graph is a finite,

simple graph such that its vertices correspond to the atoms and the edges to the bonds. There are several topological

indices that have some applications in theoretical chemistry in QSPR/QSAR study [2, 3]. Motivated by the definition of

the product connectivity index and its wide applications, Kulli [5] introduced the multiplicative sum connectivity index and

multiplicative product connectivity index of a molecular graph as follows:

The multiplicative sum connectivity index of a graph G is defined as

XII (G) =
∏

uv∈E(G)

1
√

dG (u) + dG (v)
.

The multiplicative product connectivity index of a graph G is defined as

χII (G) =
∏

uv∈E(G)

1
√

dG (u) dG (v)
.

We now define the edge version of multiplicative sum connectivity index of a graph G as

XIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) + dL(G) (f)
. (1)
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We define the edge version of multiplicative sum connectivity index of a graph G as

χIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) dL(G) (f)
. (2)

Many other multiplicative indices were studied, for example, in [6–20]. In this paper, we determine the edge version of

multiplicative sum connectivity index and the edge version of multiplicative product connectivity index for some family of

nanotubes and nanotorus. For more information about nanotubes and nanotorus see [21]. The edge version of indices were

studied, for example, in [22–24].

2. Results For TUC4C6C8 [p, q] Nanotube

We consider the graph of 2-D lattice of TUC4C6C8 [p, q] nanotube with p columns and q rows. The graph of TUC4C6C8 [1, 1]

nanotube and L(TUC4C6C8 [1, 1]) are shown in Figure 1 (a) and Figure 1(b) respectively. Also the graph of TUC4C6C8

[4, 5] is shown in Figure 1 (c).

(a) (b) (c)

Figure 1:

In the following theorem, we compute the edge version of XII index for TUC4C6C8 [p, q] nanotube.

Theorem 2.1. The edge version of multiplicative sum connectivity index of TUC4C6C8 [p, q] nanotube is given by

XIIe (TUC4C6C8 [p, q]) =

(

1

6

)p

×
(

1

7

)4p

×
(

1

8

)9pq−7p

.

Proof. Let G be the graph of TUC4C6C8 [p, q] nanotube. By calculation, we obtain

|E(L(TUC4C6C8 [p, q]))| = 18pq − 4p.

Also by calculation, we obtain that the edge set E(L(G)) can be divided into three partitions as follows:

E33 = {ef ∈ E(L(G))|dL(G)(e) = dL(G)(f) = 3}, |E33| = 2p.

E34 = {ef ∈ E(L(G))|dL(G)(e) = 3, dL(G)(f) = 4}, |E34| = 8p.

E44 = {ef ∈ E(L(G))|dL(G)(e) = dL(G)(f) = 4}, |E44| = 18pq − 14p.
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From equation (1) and by cardinalities of the edge partitions of L(G), we have

XIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) + dL(G) (f)

=

(

1√
3 + 3

)2p

×
(

1√
3 + 4

)8p

×
(

1√
4 + 4

)18pq−14p

=

(

1

6

)p

×
(

1

7

)4p

×
(

1

8

)9pq−7p

In the following theorem, we compute the edge version of χII index for TUC4C6C8 [p, q] nanotube.

Theorem 2.2. The edge version of multiplicative product connectivity index of TUC4C6C8 [p, q] nanotube is given by

χIIe (TUC4C6C8 [p, q]) =

(

1

9

)p

×
(

1

12

)4p

×
(

1

16

)9pq−7p

.

Proof. Let G = TUC4C6C8 [p, q]. From equation (2) and by cardinalities of the edge partitions of L(G), we have

χIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) dL(G) (f)

=

(

1√
3× 3

)2p

×
(

1√
3× 4

)8p

×
(

1√
4× 4

)18pq−14p

=

(

1

9

)p

×
(

1

12

)4p

×
(

1

16

)9pq−7p

.

3. Results for TUSC4C8(S) [p, q] Nanotube

We consider the graph of TUSC4C8(S) [p, q] nanotube with p columns and q rows. The graphs of TUSC4C8(S) [1, 1]

nanotube and L(TUSC4C8(S) [1, 1]) are shown in Figure 2(a) and Figure 2(b) respectively. Also the graph of

TUSC4C8(S)[5, 4] nanotube is shown in Figure 2(c).

(a) (b) (c)

Figure 2:

In the following theorem, we compute the edge version of XII index for TUSC4C8(S) [p, q] nanotube.

Theorem 3.1. The edge version of multiplicative sum connectivity index of TUSC4C8(S) [p, q] nanotube is given by

XIIe (TUSC4C8 (S) [p, q]) =

(

1

5

)2p

×
(

1

7

)4p

×
(

1

8

)12pq−4p

.

✾
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Proof. Let G be the graph of TUSC4C8(S) [p, q] nanotube. By calculation, we obtain

|E(L(TUSC4C8(S) [p, q]))| = 24pq + 4p.

Also by calculation, we obtain that the edge set E(L(G)) can be divided into three partitions as follows:

E23 = {ef ∈ E(L(G))|dL(G)(e) = 2, dL(G)(f) = 3}, |E23| = 4p.

E34 = {ef ∈ E(L(G))|dL(G)(e) = 3, dL(G)(f) = 4}, |E34| = 8p.

E44 = {ef ∈ E(L(G))|dL(G)(e) = dL(G)(f) = 4}, |E44| = 24pq − 8p.

From equation (1) and by cardinalities of the edge partitions of L(G), we have

XIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) + dL(G) (f)

=

(

1√
2 + 3

)4p

×
(

1√
3 + 4

)8p

×
(

1√
4 + 4

)24pq−8p

=

(

1

5

)2p

×
(

1

7

)4p

×
(

1

8

)12pq−4p

.

In the following theorem, we compute the edge version of χII index for TUSC4C8(S) [p, q] nanotube.

Theorem 3.2. The edge version of multiplicative sum connectivity index of TUSC4C8(S) [p, q] nanotube is given by

χIIe (TUSC4C8 (S) [p, q]) =

(

1

6

)2p

×
(

1

12

)4p

×
(

1

16

)12pq−4p

.

Proof. Let G = TUSC4C8(S) [p, q]. From equation (2) and by cardinalities of the edge partitions of L(G), we have

χIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) dL(G) (f)

=

(

1√
2× 3

)4p

×
(

1√
3× 4

)8p

×
(

1√
4× 4

)24pq−8p

=

(

1

6

)2p

×
(

1

12

)4p

×
(

1

16

)12pq−4p

.

4. Results for H-Naphtalenic NPHX [p, q] Nanotube

We now consider the graph of H-Naphtalenic NPHX [p, q] nanotube. The graphs of NPHX [1,1] nanotube and L(NPHX

[1,1]) are shown in Figure 3(a) and Figure 3(b) respectively. Also the graph of NPHX [4,3] is shown in Figure 3(c).

(a) (b) (c)

Figure 3:

In the following theorem, we compute the edge version of XII index for NPHX [p, q] nanotube.
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Theorem 4.1. The edge version of multiplicative sum connectivity index of NPHX [p, q] nanotube is given by

XIIe (NPHX [p, q]) =

(

1

6

)3p

×
(

1

7

)6p

×
(

1

8

)15pq−13p

.

Proof. Let G be the graph of NPHX [p, q] nanotube. By calculation, we obtain

|E(L(NPHX[p, q]))| = 30pq − 8p.

Also by calculation, we obtain that the edge set E(L(G)) can be divided into three partitions as follows:

E33 = {ef ∈ E(L(G))|dL(G)(e) = dL(G)(f) = 3}, |E33| = 6p.

E34 = {ef ∈ E(L(G))|dL(G)(e) = 3, dL(G)(f) = 4}, |E34| = 12p.

E44 = {ef ∈ E(L(G))|dL(G)(e) = dL(G)(f) = 4}, |E44| = 30pq − 26p.

From equation (1) and by cardinalities of the edge partitions of L(G), we have

XIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) + dL(G) (f)

=

(

1√
3 + 3

)6p

×
(

1√
3 + 4

)12p

×
(

1√
4 + 4

)30pq−26p

=

(

1

6

)3p

×
(

1

7

)6p

×
(

1

8

)15pq−13p

.

In the following theorem, we compute the edge version of χII index for NPHX [p, q] nanotube.

Theorem 4.2. The edge version of multiplicative product connectivity index of NPHX [p, q] nanotube is given by

χIIe (NPHX [p, q]) =

(

1

9

)3p

×
(

1

12

)6p

×
(

1

16

)15pq−13p

.

Proof. Let G be the graph of NPHX [p, q] nanotube. From equation (2) and by cardinalities of the edge partitions of

L(G), we have

χIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) dL(G) (f)

=

(

1√
3× 3

)6p

×
(

1√
3× 4

)12p

×
(

1√
4× 4

)30pq−26p

=

(

1

9

)3p

×
(

1

12

)6p

×
(

1

16

)15pq−13p

.

5. Results For C4C6C8 [p, q] Nanotori

We consider the graph of C4C6C8 [p, q] nanotori. The graphs of C4C6C8 [2,1] nanotori and L(C4C6C8 [2,1]) are shown in

Figure 4(a) and Figure 4(b) respectively. Also the graph of C4C6C8 [4,4] is shown in Figure 4(c).

✶✶
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(a) (b) (c)

Figure 4:

In the following theorem, we compute the edge version of XII index for C4C6C8 [p, q] nanotori.

Theorem 5.1. The edge version of multiplicative sum connectivity index of C4C6C8 [p, q] nanotori is given by

XIIe (C4C6C8 [p, q]) =

(

1√
6

)3p

×
(

1

7

)2p

×
(

1√
8

)18pq−9p

.

Proof. Let G be the graph of C4C6C8 [p, q] nanotori. By calculation, we obtain

|E(L(C4C6C8[p, q]))| = 18pq − 2p.

Also by calculation, we obtain that the edge set E(L(G)) can be divided into four partitions as follows:

E24 = {ef ∈ E(L(G))|dL(G)(e) = 2, dL(G)(f) = 4}, |E24| = 2p.

E33 = {ef ∈ E(L(G))|dL(G)(e) = dL(G)(f) = 3}, |E33| = p.

E34 = {ef ∈ E(L(G))|dL(G)(e) = 3, dL(G)(f) = 4}, |E34| = 4p.

E44 = {ef ∈ E(L(G))|dL(G)(e) = dL(G)(f) = 4}, |E44| = 18pq − 9p.

From equation (1) and by cardinalities of the edge partitions of L(G), we have

XIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) + dL(G) (f)

=

(

1√
2 + 4

)2p

×
(

1√
3 + 3

)p

×
(

1√
3 + 4

)4p

×
(

1√
4 + 4

)18pq−9p

=

(

1√
6

)3p

×
(

1

7

)2p

×
(

1√
8

)18pq−9p

.

In the following theorem, we compute the edge version of χII index for C4C6C8 [p, q] nanotori.

Theorem 5.2. The edge version of multiplicative product connectivity index of C4C6C8 [p, q] nanotori is given by

χIIe (C4C6C8 [p, q]) =

(

1

8

)p

×
(

1

3

)p

×
(

1

12

)2p

×
(

1

4

)18pq−9p

.
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Proof. Let G be the graph of C4C6C8 [p, q] nanotori. From equation (2) and by cardinalities of the edge partitions of

L(G), we have

χIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) dL(G) (f)

=

(

1√
2× 4

)2p

×
(

1√
3× 3

)p

×
(

1√
3× 4

)4p

×
(

1√
4× 4

)18pq−9p

=

(

1

8

)p

×
(

1

3

)p

×
(

1

12

)2p

×
(

1

4

)18pq−9p

.

6. Results For TC4C8(S) [p, q] Nanotori

We now consider the graph of TC4C8(S) [p, q] nanotori. The graphs of TC4C8(S) [2,1] nanotori and L(TC4C8(S)[2, 1]) are

shown in Figure 5(a) and Figure 5(b) respectively. Also the graph of TC4C8(S) [5,3] nanotori is shown in Figure 5(c).

(a) (b) (c)

Figure 5:

In the following theorem, we compute the edge version of XII index for TC4C8(S) [p, q] nanotori.

Theorem 6.1. The edge version of multiplicative sum connectivity index of TC4C8(S) [p, q] nanotori is given by

XIIe (TC4C8 (S) [p, q]) =

(

1

5

)p

×
(

1

6

)2p

×
(

1

7

)2p

×
(

1

8

)12pq−7p

.

Proof. Let G be the graph of TC4C8(S) [p, q] nanotori. By calculation, we obtain

|E(L(TC4C8(S)[p, q]))| = 24pq − 4p.

Also by calculation, we obtain that the edge set E(L(G)) can be divided into four partitions as follows:

E23 = {ef ∈ E(L(G))|dL(G)(e) = 2, dL(G)(f) = 3}, |E23| = 2p.

E24 = {ef ∈ E(L(G))|dL(G)(e) = 2, dL(G)(f) = 4}, |E24| = 4p.

E34 = {ef ∈ E(L(G))|dL(G)(e) = 3, dL(G)(f) = 4}, |E34| = 4p.

E44 = {ef ∈ E(L(G))|dL(G)(e) = dL(G)(f) = 4}, |E44| = 24pq − 14p.

From equation (1) and by cardinalities of the edge partitions of L(G), we have

XIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) + dL(G) (f)

=

(

1√
2 + 3

)2p

×
(

1√
2 + 4

)4p

×
(

1√
3 + 4

)4p

×
(

1√
4 + 4

)24pq−14p

=

(

1

5

)p

×
(

1

6

)2p

×
(

1

7

)2p

×
(

1

8

)12pq−7p

.

✶✸
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In the next theorem, we compute the edge version of χII index for TC4C8(S) [p, q] nanotori.

Theorem 6.2. The edge version of multiplicative product connectivity index of TC4C8(S) [p, q] nanotori is given by

χIIe (C4C6C8 [p, q]) =

(

1

6

)p

×
(

1

8

)2p

×
(

1

12

)2p

×
(

1

4

)24pq−14p

.

Proof. Let G be the graph of TC4C8(S) [p, q] nanotori. From equation (2) and by cardinalities of the edge partitions of

L(G), we have

χIIe (G) =
∏

ef∈E(L(G))

1
√

dL(G) (e) dL(G) (f)

=

(

1√
2× 3

)2p

×
(

1√
2× 4

)4p

×
(

1√
3× 4

)4p

×
(

1√
4× 4

)24pq−14p

=

(

1

6

)p

×
(

1

8

)2p

×
(

1

12

)2p

×
(

1

4

)24pq−14p

.
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