

International Journal of Current Research in Science and Technology

On Contra-pre-B-semi Continuous Functions

Research Article

T. Kavitha^{*}

Department of Mathematics, RVS College of Engineering and Technology, Dindigul, Tamil Nadu, India.

Abstract: In this paper, We introduce and investigate contra-pre-B-semi-continous function. This new class is a super class of the class of contra-B- β -continuous functions and contra-B-pre continuous function.

MSC: 54A05, 54D10.

Keywords: Λ_B -sets, λ_B -open set, contra-B-continuous function, contra- λ_B -continuous function, contra-Bg-continuous function, contra-BRC-continuous function.

© JS Publication.

1. Introduction

Dontchev [2] introduced the notion of contra-continuity and some results concerning compactness, S-closedness and strong S-closedness in 1996. Dontchev and Noiri [3] introduced and investigated contra-semi-continuous functions and RC-continuous functions between topological spaces in 1999. Jafari and Noiri [4] introduced contra-precontinuous functions and obtained their basic properties. Jafari and Noiri [5] introduced contra- α -continuous functions between topological spaces. Veera Kumar [12] introduced the class of contra- ψ -continuous functions. The same Veera Kumar [11, 13] introduced pre-semi-closed sets and contra-pre-semi-continuous functions for topological spaces. In this chapter, we introduce and investigate pre-B-semi-closed sets and contra-pre-B-semi-continuous function in simply extended topological spaces. This new class is the super class of the class of contra-B- β -continuous functions and contra-B-pre continuous functions.

2. Preliminaries

Throughout this paper, $(X, \tau(B_X))$, $(Y, \sigma(B_Y))$ and $(Z, \eta(B_Z))$ (briefly X, Y and Z) will denote simply extended topological spaces.

Definition 2.1. Levine [6] in 1964 defined $\tau(B) = \{O \cup (\acute{O} \cap B) : O, \acute{O} \in \tau\}$ and called it simple extension of τ by B, where $B \notin \tau$. The sets in $\tau(B)$ are called B-open sets. And the complement of B-open set is called B-closed.

Definition 2.2 ([6]). Let S be a subset of a simply extended topological space X. Then

(1). The B-closure of S, denoted by Bcl(S), is defined as $\cap \{F : S \subseteq F \text{ and } F \text{ is } B\text{-closed}\}$;

 $[\]degree$ E-mail: kavisakthi1983@gmail.com

(2). The B-interior of S, denoted by Bint(S), is defined as $\cup \{F : F \subseteq S \text{ and } F \text{ is } B\text{ -open}\}.$

Definition 2.3 ([6]). A subset A of a topological space $(X, \tau(B))$ is said to be

(1). B-semi-open if $A \subseteq Bcl(Bint(A))$,

(2). B-preopen if $A \subseteq Bint(Bcl(A))$,

- (3). B- α -open if $A \subseteq Bint(Bcl(Bint(A)))$,
- (4). B- β -open or B-semi-preopen if $A \subseteq Bcl(Bint(Bcl(A)))$,

(5). B-b-open if $A \subseteq Bcl(Bint(A)) \cup Bint(Bcl(A))$.

The family of all B-open (resp. B-semi-open, B-preopen, B- α -open, B- β -open, B-b-open) sets in a topological space $(X, \tau(B))$ is denoted by B(X) (resp. BSO(X) BPO(X), $B\alpha(X)$, $B\beta O(X)$, BbO(X)).

Definition 2.4. A subset S of X is called B-regular open [9] if S = Bint(Bcl(S)). The complement of B-regular open set is called B-regular closed. The B-semi-closure of a subset A of X, denoted by Bscl(A), is the intersection of all B-semi-closed sets of X containing A. The B- β -closure of a subset A of X, denoted by $B\beta cl(A)$, is the intersection of all B- β -closed sets of X containing A. The B-semi-interior of a subset A of X, denoted by $B\beta cl(A)$, is the intersection of all B- β -closed sets of X containing A. The B-semi-interior of a subset A of X, denoted by $B\beta cl(A)$, is defined to be the union of all B-semi-open sets contained in A.

Definition 2.5. A subset A of a space $(X, \tau(B))$ is called Bg-closed set [1] if $Bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. The complement of Bg-closed set is called Bg-open set.

Definition 2.6. A subset A of a space $(X, \tau(B))$ is called Bsg-closed set [8] if $Bscl(A) \subseteq U$ whenever $A \subseteq U$ and U is B-semi-open in X. The complement of Bsg-closed set is called Bsg-open set.

Definition 2.7. A subset A of a space (X, τ) is called Ψ -closed set [10] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open set of X. The complement of Ψ -closed set is called Ψ -open.

Definition 2.8 ([10]). A subset A of a space (X, τ) is called Generalized semi-preclosed (briefly gsp-closed) set if $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set of X.

Definition 2.9 ([7]). A function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is called

- (1). B-continuous if $f^{-1}(V)$ is B-open in X, for every B-open set V of Y.
- (2). B-pre continuous if $f^{-1}(V) \in BPO(X)$, for every B-open set V of Y.
- (3). B- α -continuous if $f^{-1}(V) \in B\alpha O(X)$, for every B-open set V of Y.
- (4). B-semi-continuous if $f^{-1}(V) \in BSO(X)$, for every B-open set V of Y.
- (5). B- β -continuous if $f^{-1}(V) \in B\beta O(X)$, for every B-open set V of Y.

3. Pre-B-semi-closed Sets

Definition 3.1. A subset A of a space $(X, \tau(B))$ is called $B\Psi$ -closed set if $Bscl(A) \subseteq U$ whenever $A \subseteq U$ and U is Bsg-open set of X. The complement of $B\Psi$ -closed set is called $B\Psi$ -open.

Definition 3.2. A subset A of a space $(X, \tau(B))$ is called B-generalized semi-preclosed (briefly Bgsp-closed) set if $B\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is B-open set of X.

Definition 3.3. A subset A of a space $(X, \tau(B))$ is called pre-B-semi-closed set if $B\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is B-g-open set of X. The complement of pre-B-semi-closed set is called pre-B-semi-open.

Definition 3.4. A function $f: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is called

- (1). perfectly B-continuous if $f^{-1}(V)$ is B-clopen in X for every B-open set V of Y.
- (2). B-RC-continuous if $f^{-1}(V)$ is B-regular open in X for every B-open set V of Y.
- (3). contra-B-continuous if $f^{-1}(V)$ is B-closed in X for every B-open set V of Y.
- (4). contra-B-pre continuous if $f^{-1}(V)$ is B-preclosed in X for every B-open set V of Y.
- (5). contra-B-semi-continuous if $f^{-1}(V)$ is B-semi-closed in X for every B-open set V of Y.
- (6). contra-B- α -continuous if $f^{-1}(V)$ is B- α -closed in X for every B-open set V of Y.
- (7). contra-B- β -continuous if $f^{-1}(V)$ is B- β -closed in X for every B-open set V of Y.
- (8). contra-B- Ψ -continuous if $f^{-1}(V)$ is B Ψ -closed in X for every B-open set V of Y.

Definition 3.5. A simply extended topological space $(X, \tau(B))$ is called

- (1). Bsemi- T_0 space if to each pair of distinct points x, y of X, there exist a B-semi-open set containing one but not the other.
- (2). Bsemi-generalized- T_0 (briefly Bsg- T_0 space if to each pair of distinct points x, y of X, there exist a Bsg-open set containing one but not the other.

Definition 3.6. A simply extended topological space $(X, \tau(B))$ is called

- (1). pre-Bsemi- $T_{1/2}$ space if every pre-B-semi-closed set in it is B- β -closed.
- (2). pre-Bsemi- T_b space if every pre-B-semi-closed set in it is B-semi-closed.
- (3). pre-Bsemi- $T_{3/4}$ space if every pre-B-semi-closed set in it is B-pre-closed.
- (4). Bsemi-pre- $T_{1/2}$ space if every Bgsp-closed set in it is B- β -closed.
- **Theorem 3.7.** Every B- β -closed set is a pre-B-semi-closed set.

Proof. Follows from the fact that $B\beta cl(A)=A$ for any B- β -closed set.

The following Example shows that the implication in the above Theorem is not reversible.

Example 3.8. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$ and $B = \{a, c\}$. Then the sets in $\{\phi, X, \{a\}, \{a, c\}\}$ are called *B*-open. Let $A = \{a, b\}$. Then A is a pre-B-semi-closed set but not a B- β -closed set.

Thus the class of pre-B-semi-closed sets properly contains the class of $B-\beta$ -closed sets.

Remark 3.9. Union of two pre-B-semi-closed sets need not be pre-B-semi-closed. Let $X = \{a, b, c\}, \tau = \{\phi, X\}$ and $B = \{a, b\}$. Then the sets in $\{\phi, X, \{a, b\}\}$ are called B-open. Let $A = \{a\}$ and $C = \{b\}$. Then A and C are pre-B-semi-closed sets. But $A \cup B = \{a, b\}$ is not a pre-B-semi-closed set.

Theorem 3.10. If A is a pre-B-semi-closed set of $(X, \tau(B))$, then $B\beta cl(A)-A$ does not contain any non-empty B-g-closed set.

Proof. Let F be a B-g-closed set of $(X, \tau(B))$ such that $F \subseteq B\beta cl(A) - A$. Then $A \subseteq X - F$. Since A is pre-B-semi-closed and X - F is B-g-open, then $B\beta cl(A) \subseteq X - F$. This implies $F \subseteq X - B\beta cl(A)$. So $F \subseteq (X - B\beta cl(A)) \cap (B\beta cl(A) - A) \subseteq X - B\beta cl(A) \cap B\beta cl(A) = \phi$. Thus $F = \phi$.

Result 3.11.

(1). Every B-open set is B-g-open set but not conversely.

(2). Every B-preclosed set is B- β -closed set but not conversely.

Proposition 3.12. Every pre-B-semi-closed set is Bgsp-closed set but not conversely.

The converse of the above Proposition is not true in general as can be seen from the following Example.

Example 3.13. Let $X = \{a, b, c\}, \tau = \{\phi, X\}$ and $B = \{b\}$. Then the sets in $\{\phi, X, \{b\}\}$ are B-open. Then $\{a, b\}$ is Bgsp-closed but not pre-B-semi-closed set.

Theorem 3.14. Every B-semi-pre- $T_{1/2}$ space is a pre-B-semi- $T_{1/2}$ space.

The converse of the above Theorem is not true in general as can be seen from the following Example.

Example 3.15. Let $X = \{a, b, c\}, \tau = \{\phi, X\}$ and $B = \{a\}$ then $\tau(B) = \{\phi, X, \{a\}\}$. Then X is a B-semi-pre- $T_{1/2}$ space since $\{a, b\}$ is a Bgsp-closed set but not a B- β -closed in X. However X is a pre-B-semi- $T_{1/2}$ space.

Thus the class of pre-B-semi- $T_{1/2}$ space properly contains the class of Bsemi-pre- $T_{1/2}$ space.

Lemma 3.16. For a subset A of a space X, the following are equivalent.

- (1). A is regular B-closed;
- (2). A is B-preclosed and B-semi-open;

(3). A is B- α -closed and B- β -open.

Proof.

 $(1)\Rightarrow(2)$ Let A be regular B-closed. Then A= Bcl(Bint(A)). Since every regular B-closed is B-closed and hence B-preclosed, A is B-preclosed and B-semi-open.

 $(2)\Rightarrow(3)$ Let A be B-preclosed and B-semi-open. Then $Bcl(Bint(A)) \subset A$ and $A \subset Bcl(Bint(A))$. Therefore, we have $Bcl(Bint(Bcl(A))) \subset Bcl(Bint(Bcl(Bint(A)))) = Bcl(Bint(A)) \subset A$. This shows that A is B- α -closed. Since $BSO(X) \subset B\beta O(X)$, it is obvious that A is B- β -open.

 $(3) \Rightarrow (1)$ Let A be B- α -closed and B- β -open. Then A = Bcl(Bint(Bcl(A))) and hence Bcl(Bint(A)) = Bcl(Bint(Bcl(A)))) = Bcl(Bint(Bcl(A))) = A. Therefore A is regular B-closed.

As a consequence of the above Lemma, we have the following Result.

Theorem 3.17. The following statements are equivalent for a function $f: X \to Y$:

- (1). f is B-RC-continuous;
- (2). f is a contra-B-pre-continuous and B-semi-continuous;
- (3). f is contra-B- α -continuous and B- β -continuous.

Theorem 3.18. For a set $A \subseteq (X, \tau(B))$ the following conditions are equivalent:

- (1). A is B-clopen;
- (2). A is B- α -open and B-closed;
- (3). A is B-preopen and B-closed.

Proof.

 $(1)\Rightarrow(2)$ and $(2)\Rightarrow(3)$ are obvious from the fact that every B-open set is B- α -open and hence B-preopen.

 $(3) \Rightarrow (1)$ Since A is B-preopen, then A \subseteq Bint(Bcl(A)). Since A is B-closed, then A \subseteq Bint(Bcl(A))=Bint(A) or equivalently A is B-open and hence B-clopen.

As a consequences of the above decompositions of B-clopen sets we have the following decomposition of perfect B-continuity.

Theorem 3.19. For a function $f: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ the following conditions are equivalent:

- (1). f is perfectly B-continuous;
- (2). f is B-continuous and contra-B-continuous;
- (3). f is B- α -continuous and contra-B-continuous;
- (4). f is B-pre-continuous and contra-B-continuous.

Theorem 3.20. The following statements are equivalent for a function $f: X \to Y$:

- (1). f is contra-B- α -continuous;
- $(2).\ f\ is\ a\ contra-B-pre-continuous\ and\ contra-B-semi-continuous.$

Proof. It follows from the fact that $B\alpha O(X) = BSO(X) \cap BPO(X)$.

Proposition 3.21. Every B-semi-open set is $B\psi$ -open.

The converse of the above Proposition is not true in general as can be seen from the following Example.

Example 3.22. Let $X = \{a, b, c\}, \tau = \{\phi, X\}$ and $B = \{a, b\}$. Then the sets in $\{\phi, X, \{a, b\}\}$ are called B-open. Here $\{a\}$ is $B\psi$ -open set but not B-semi-open set.

Definition 3.23. A space X is called $B\psi$ - T_0 if and only if to each pair of distinct points x, y of X, there exists a $B\psi$ -open set containing one but not the other.

Theorem 3.24. Every Bsemi- T_0 space is $B\psi$ - T_0 space.

Proposition 3.25. Every $B\psi$ -open set is Bsg-open set.

The converse of the above Proposition is not true in general as can be seen from the following Example.

Example 3.26. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b\}\}$ and $B = \{a, c\}$. Then the sets in $\{\phi, X, \{b\}, \{a,c\}\}$ are called B-open. Then $\{a\}$ is Bsg-open but not $B\psi$ -open set.

Theorem 3.27. Every B-closed (resp. B- α -closed, B-semi-closed, B-preclosed and Bsg-closed) set is pre-B-semi-closed set but the converses are not true.

Proof. Follows from the above Example 3.8 and the fact that every B-closed (resp. B- α -closed, B-semi-closed, B-preclosed and Bsg-closed) set is B- α -closed (resp. B-semi-closed, B- β -closed, B- β -closed and B- β -closed) set. Thus the class of pre-B-semi-closed sets properly contain the classes of B-closed sets, B- α -closed sets, B-semi-closed sets and Bsg-closed sets.

Theorem 3.28. If A is B-g-open and pre-B-semi-closed, then A is B- β -closed.

Theorem 3.29. If A is pre-B-semi-closed set of $(X, \tau(B))$ such that $A \subseteq C \subseteq B\beta cl(A)$, then C is also a pre-B-semi-closed set of $(X, \tau(B))$.

Proof. Let U be a Bg-open set of $(X, \tau(B))$ such that $B \subseteq U$. Then $A \subseteq U$. Since A is pre-B-semi-closed, $B\beta cl(A) \subseteq U$. Now, $B\beta cl(C) \subseteq B\beta cl(B\beta cl(A)) = B\beta cl(A) \subseteq U$. Therefore B is also a pre-B-semi-closed set.

Definition 3.30. A subset A of simply extended topological space X is said to be B-nowhere dense if $Bint(Bcl(A)) = \phi$.

Theorem 3.31. For a space $(X, \tau(B))$ the following are equivalent:

(1). X is a pre-B-semi- $T_{1/2}$ space.

(2). Every singleton of X is B-g-closed or B- β -open.

Proof.

 $(1)\Rightarrow(2)$ Suppose that $\{x\}$ is not B-g-closed for some $x \in X$. Then $X - \{x\}$ is not B-g-open. So X is the only B-g-open set containing $X - \{x\}$ and hence $X - \{x\}$ is trivially a pre-B-semi-closed set of $(X, \tau(B))$. By (1), $X - \{x\}$ is B- β -closed set or equivalently $\{x\}$ is B- β -open.

 $(2)\Rightarrow(1)$ Suppose that $\{x\}$ is not B-preopen for some $x \in X$. Since every singleton is either B-preopen or B-nowhere dense, $\{x\}$ is a B-nowhere dense. Hence $\{x\}\notin Bcl(Bint(Bcl(\{x\}))) = \phi$. Therefore $\{x\}$ is not B- β -open. By (2), $\{x\}$ is a B-g-closed set of $(X, \tau(B))$.

Theorem 3.32. If $(X, \tau(B))$ is a pre-B-semi-T_b space, then for each $x \in X$, $\{x\}$ is either B-g-closed or B-semi-open.

Proof. Suppose that $\{x\}$ is not a B-g-closed set of pre-B-semi- T_b space $(X, \tau(B))$. Then X is the only B-g-open set containing $X - \{x\}$ and hence $X - \{x\}$ is a pre-B-semi-closed set. Since $(X, \tau(B))$ is a pre-B-semi- T_b space, $X - \{x\}$ is B-semi-closed or equivalently $\{x\}$ is B-semi-open.

4. Contra-pre-B-semi-continuous Functions

Definition 4.1. A function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is called contra-pre-B-semi-continuous if $f^{-1}(V)$ is pre-B-semi-closed in X, for every B-open set V of Y.

Theorem 4.2. Every contra-B- β -continuous function is contra-pre-B-semi-continuous.

Proof. It follows from the fact that every $B-\beta$ -closed set is pre-B-semi-closed.

Example 4.3. A contra-pre-B-semi-continuous function need not be contra-B- β -continuous. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}\}$ and $B_X = \{a, c\}$. Then the sets in $\{\phi, X, \{a\}, \{a, c\}\}$ are called B_X -open. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{a\}$. Then the sets in $\{\phi, Y, \{a\}\}$ are called B_Y -open. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be defined by f(a)=a, f(b)=a and f(c)=b. Then f is contra-pre-B-semi-continuous but not contra-B β -continuous. Then f is contra-pre-B-semi-continuous but not contra-B β -continuous. Thus the class of contra-pre-B-semi-continuous functions properly contain the class of contra-B β -continuous functions.

Theorem 4.4. Every contra-B-pre continuous function is contra-pre-B-semi-continuous.

Proof. It follows from the fact that every B-preclosed set is pre-B-semi-closed.

Example 4.5. A contra-pre-B-semi-continuous function need not be contra-B-pre continuous. Let $X=Y=\{a,b,c\}, \tau = \{\phi, X, \{a\}\}$ and $B_X = \{b\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ are called B_X -open. Let $\sigma=\{\phi, Y\}$ and $B_Y = \{a\}$. Then the sets in $\{\phi, Y, \{a\}\}$ are called B_Y -open. Let $g: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be defined by g(a)=a, g(b)=b and g(c)=c. Then g is contra-pre-B-semi-continuous but not contra-B-precontinuous. Thus the class of contra-pre-B-semi-continuous functions properly contain the class of contra-B-pre continuous functions. Thus we have the following diagram for the functions we defined:

In the above diagram, $A \rightarrow B$ denotes A implies B but not conversely.

Example 4.6. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{c\}\}$ and $B_X = \{b, c\}$ then $\tau(B_X) = \{\phi, X, \{c\}, \{b, c\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{a\}$ then $\sigma(B_Y) = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B-continuous but not perfectly B-continuous.

Example 4.7. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{b\}, \{b, c\}\}$ and $B_X = \{c\}$ then $\tau(B_X) = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{a, b\}$ then $\sigma(B_Y) = \{\phi, Y, \{a, b\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is B-RC-continuous but not perfectly B-continuous.

Example 4.8. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{c\}\}$ and $B_X = \{b, c\}$ then $\tau(B_X) = \{\phi, X, \{c\}, \{b, c\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{a\}$ then $\sigma(B_Y) = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B-continuous but not B-RC-continuous.

Example 4.9. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{c\}\}$ and $B_X = \{a\}$ then $\tau(B_X) = \{\phi, X, \{a\}, \{a, c\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{c\}$ then $\sigma(B_Y) = \{\phi, Y, \{c\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B- α -continuous but not contra-B-continuous.

Example 4.10. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{c\}\}$ and $B_X = \{a\}$ then $\tau(B_X) = \{\phi, X, \{a\}, \{a, c\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{c\}$ then $\sigma(B_Y) = \{\phi, Y, \{c\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B-semi-continuous but not B-RC-continuous.

Example 4.11. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $B_X = \{b\}$ then $\tau(B_X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{b\}$ then $\sigma(B_Y) = \{\phi, Y, \{b\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B-semi-continuous but not contra-B- α -continuous.

Example 4.12. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$ and $B_X = \{b, c\}$ then $\tau(B_X) = \{\phi, X, \{a\}, \{b, c\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{c\}$ then $\sigma(B_Y) = \{\phi, Y, \{c\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B-pre-continuous but not contra-B- α -continuous.

Example 4.13. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $B_X = \{b\}$ then $\tau(B_X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{a\}$ then $\sigma(B_Y) = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B- β -continuous but not contra-B-pre-continuous.

Example 4.14. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X\}$ and $B_X = \{a, b\}$ then $\tau(B_X) = \{\phi, X, \{a, b\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{a, c\}$ then $\sigma(B_Y) = \{\phi, Y, \{a, c\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-pre-B-semi-continuous but not contra-B-pre-continuous.

Example 4.15. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X\}$ and $B_X = \{a, b\}$ then $\tau(B_X) = \{\phi, X, \{a, b\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{a, c\}$ then $\sigma(B_Y) = \{\phi, Y, \{a, c\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-pre-B-semi-continuous but not contra-B- β -continuous.

Example 4.16. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X\}$ and $B_X = \{a, b\}$ then $\tau(B_X) = \{\phi, X, \{a, b\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{a, c\}$ then $\sigma(B_Y) = \{\phi, Y, \{a, c\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B- ψ -continuous but not contra-B-semi-continuous.

Example 4.17. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X\}$ and $B_X = \{a, b\}$ then $\tau(B_X) = \{\phi, X, \{a, b\}\}$. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{b\}$ then $\sigma(B_Y) = \{\phi, Y, \{b\}\}$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B- β -continuous but not contra-B- ψ -continuous.

Definition 4.18. A space $(X, \tau(B))$ is called pre-B-semi-locally indiscrete if every pre-B-semi-open set in it is B-closed.

Example 4.19. Let $X = \{a, b\}$, $\tau = \{\phi, X, \{a\} \text{ and } B = \{b\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}\}$ are called B-open. Then the sets in $\{\phi, X, \{a\}, \{b\}\}$ are called B-closed. Then the sets in $\{\phi, X, \{a\}, \{b\}\}$ are called pre-B-semi-open sets. Therefore $(X, \tau(B))$ is a pre-B-semi-locally indiscrete space. The space $(X, \tau(B))$ in Example 4.5 is not a pre-B-semi-locally indiscrete space space since $\{a\}$ is a pre-B-semi-open set but it not B-closed.

Theorem 4.20. If a function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is pre-B-semi-continuous and $(X, \tau(B_X))$ is a pre-B-semi-locally indiscrete, then f is contra-B-continuous.

Proof. Let V be an B_Y -open. Then $f^{-1}(V)$ is pre-B-semi-open in X, since f is pre-B-semi-continuous. Since $(X, \tau(B_X))$ is pre-B-semi-locally indiscrete, $f^{-1}(V)$ is B_X -closed. Therefore f is contra-B-continuous.

Theorem 4.21. If a function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is contra-pre-B-semi-continuous and $(X, \tau(B_X))$ is a pre-B-semi- $T_{1/2}$ space, then f is contra-B- β -continuous.

Proof. Let V be an B_Y -open. Then $f^{-1}(V)$ is pre-B-semi-closed in X, since f is contra-pre-B-semi-continuous. Since $(X, \tau(B_X))$ is pre-B-semi- $T_{1/2}, f^{-1}(V)$ is B- β -closed in X. Therefore f is contra-B- β -continuous.

Theorem 4.22. If a function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is contra-pre-B-semi-continuous and $(X, \tau(B_X))$ is a pre-B-semi- T_b space, then f is contra-B-semi-continuous.

Proof. Let V be an B_Y -open set. Then $f^{-1}(V)$ is pre-B-semi-closed in X, since f is contra-pre-B-semi-continuous. Since $(X, \tau(B_X))$ is pre-B-semi- $T_b, f^{-1}(V)$ is B-semi-closed in X. Therefore f is contra-B-semi-continuous.

Theorem 4.23. If a function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is contra-pre-B-semi-continuous and $(X, \tau(B_X))$ is a pre-B-semi- $T_{3/4}$ space, then f is contra-B-pre continuous.

Proof. Let V be an B_Y -open. Then $f^{-1}(V)$ is pre-B-semi-closed in X, since f is contra-pre-B-semi-continuous. Since $(X, \tau(B_X))$ is pre-B-semi- $T_{3/4}, f^{-1}(V)$ is B-preclosed in X. Therefore f is contra-B-pre continuous.

References

- [2] J.Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19(2)(1996), 303-310.
- [3] J.Dontchev and T.Noiri, Contra semi-continuous functions, Math. Pannon, 10(2)(1999), 159-168.
- [4] S.Jafari and T.Noiri, On contra-precontinuous functions, Bull. Malays. Math. Sci. Soc., (2)25(2)(2002), 115-128.
- [5] S.Jafari and T.Noiri, Contra α -continuous functions between topological spaces, Iran. J. Sci., 2(2)(2001), 153-167.
- [6] N.Levine, Simple extension of topologies, Amer. Math. Monthly, 71(1964), 22-25.
- [7] M.Murugalingam, O.Ravi and S.Nagarani, New generalized continuous functions, International Journal of Mathematics And its Applications, 3(3B)(2015), 5562.
- [8] O.Ravi, M.Murugalingam and S.Nagarani, On Decompositions of continuity in simply extended topological spaces, (submitted).
- [9] A.Vadivel, R.Vijayalakshmi and D.Krishnaswamy, B-Generalized regular and B-generalized normal spaces, International Mathematical Forum, 5(54)(2010), 2699-2706.
- [10] M.K.R.S.Veera Kumar, Between semi-closed sets and semi-pre-closed sets, Rend. Istit. Mat. Univ. Trieste., 32(1-2)(2000), 25-41.
- [11] M.K.R.S.Veera Kumar, Pre-semi-closed sets, Indian J. Math., 44(2)(2002), 165-181.
- [12] M.K.R.S.Veera Kumar, Contra- ψ -continuous functions, preprint.
- [13] M.K.R.S.Veera Kumar, Contra-Pre-semi-continuous functions, Bull. Malays. Math. Sci. Soc., (2)28(1)(2005), 67-71.

M.E.Abd El-Monsef, A.M.Kozae and R.A.Abu-Gdairi, New approaches for generalized continuous functions, Int. Journal of Math. Analysis, 4(27)(2010), 1329-1339.