

International Journal of Current Research in Science and Technology

On Contra-pre-B-semi Continuous Functions

Research Article

T. Kavitha[®]

Department of Mathematics, RVS College of Engineering and Technology, Dindigul, Tamil Nadu, India.

Abstract: In this paper, We introduce and investigate contra-pre-B-semi-continous function. This new class is a super class of the class of contra-B-β-continuous functions and contra-B-pre continuous function.

MSC: 54A05, 54D10.

Keywords: Λ_B -sets, λ_B -open set, contra-B-continuous function, contra- λ_B -continuous function, contra-Bg-continuous function, contra-BRC-continuous function.

c JS Publication.

1. Introduction

Dontchev [\[2\]](#page-8-0) introduced the notion of contra-continuity and some results concerning compactness, S-closedness and strong S-closedness in 1996. Dontchev and Noiri [\[3\]](#page-8-1) introduced and investigated contra-semi-continuous functions and RC-continuous functions between topological spaces in 1999. Jafari and Noiri [\[4\]](#page-8-2) introduced contra-precontinuous functions and obtained their basic properties. Jafari and Noiri [\[5\]](#page-8-3) introduced contra-α-continuous functions between topological spaces. Veera Kumar [\[12\]](#page-8-4) introduced the class of contra- ψ -continuous functions. The same Veera Kumar [\[11,](#page-8-5) [13\]](#page-8-6) introduced pre-semi-closed sets and contra-pre-semi-continuous functions for topological spaces. In this chapter, we introduce and investigate pre-B-semi-closed sets and contra-pre-B-semi-continuous function in simply extended topological spaces. This new class is the super class of the class of contra-B-β-continuous functions and contra-B-pre continuous functions.

2. Preliminaries

Throughout this paper, $(X, \tau(B_X))$, $(Y, \sigma(B_Y))$ and $(Z, \eta(B_Z))$ briefly X, Y and Z) will denote simply extended topological spaces.

Definition 2.1. Levine [\[6\]](#page-8-7) in 1964 defined $\tau(B) = \{O \cup (\hat{O} \cap B) : O, \hat{O} \in \tau\}$ and called it simple extension of τ by B, where $B \notin \tau$. The sets in $\tau(B)$ are called B-open sets. And the complement of B-open set is called B-closed.

Definition 2.2 ([\[6\]](#page-8-7)). *Let S be a subset of a simply extended topological space X. Then*

(1). The B-closure of S, denoted by Bcl(S), is defined as ∩ { $F : S ⊆ F$ and F is B*-*closed}*;*

[∗] *E-mail: [kavisakthi1983@gmail.com](jeyalakshmipitchai@gmail.com)*

(2). The B-interior of S, denoted by $Bint(S)$, is defined as \cup {F : F \subseteq S and F is B*-*open}*.*

Definition 2.3 ([\[6\]](#page-8-7)). *A subset A of a topological space* $(X, \tau(B))$ *is said to be*

(1). B-semi-open if $A \subseteq Bel(Bint(A)),$

(2). B-preopen if $A \subseteq Bint(Bcl(A)),$

(3). B- $α$ -*open if* $A ⊆ Bint (Bcl(Bint(A))),$

(4). B-β-open or *B*-semi-preopen if $A ⊆ Bel(Bint(Bcl(A))),$

(5). B-b-open if $A \subseteq Bel(Bint(A)) \cup Bint(Bcl(A)).$

*The family of all B-open (resp. B-semi-open , B-preopen, B-*α*-open, B-*β*-open, B-b-open) sets in a topological space* $(X, \tau(B))$ *is denoted by B(X) (resp. BSO(X) BPO(X), B* $\alpha(X)$ *, B* $\beta\beta O(X)$ *, BbO(X)).*

Definition 2.4. *A subset S of X is called B-regular open [\[9\]](#page-8-8) if S = Bint(Bcl(S)). The complement of B-regular open set is called B-regular closed. The B-semi-closure of a subset A of X, denoted by Bscl(A), is the intersection of all B-semi-closed sets of X containing A. The B-*β*-closure of a subset A of X, denoted by B*β*cl(A), is the intersection of all B-*β*-closed sets of X containing A. The B-semi-interior of a subset A of X, denoted by Bsint(A), is defined to be the union of all B-semi-open sets contained in A.*

Definition 2.5. *A subset A of a space* $(X, \tau(B))$ *is called Bg-closed set* $\lceil l \rceil$ *if* $\text{Bcl}(A) \subseteq U$ *whenever* $A \subseteq U$ *and* U *is open in X. The complement of Bg-closed set is called Bg-open set.*

Definition 2.6. *A subset A of a space* $(X, \tau(B))$ *is called Bsg-closed set* β *if Bscl*(*A*) $\subseteq U$ *whenever* $A \subseteq U$ *and U is B-semi-open in X. The complement of Bsg-closed set is called Bsg-open set.*

Definition 2.7. *A subset A of a space* (X, τ) *is called* Ψ -closed set [\[10\]](#page-8-11) *if* scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is sg-open *set of X. The complement of* Ψ*-closed set is called* Ψ*-open.*

Definition 2.8 ([\[10\]](#page-8-11)). *A subset A of a space* (X, τ) *is called Generalized semi-preclosed (briefly gsp-closed) set if* $\beta c l(A) \subseteq U$ *whenever* $A \subseteq U$ *and U is open set of X*.

Definition 2.9 ([\[7\]](#page-8-12)). *A function* $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ *is called*

- (1). B-continuous if $f^{-1}(V)$ is B-open in X, for every B-open set V of Y.
- (2). B-pre continuous if $f^{-1}(V) \in BPO(X)$, for every B-open set V of Y.
- (3). B- α -continuous if $f^{-1}(V) \in B\alpha O(X)$, for every B-open set V of Y.
- (4). B-semi-continuous if $f^{-1}(V) \in BSO(X)$, for every B-open set V of Y.
- (5). B- β -continuous if $f^{-1}(V) \in B\beta O(X)$, for every B-open set V of Y.

3. Pre-B-semi-closed Sets

Definition 3.1. A subset A of a space $(X, \tau(B))$ is called BV-closed set if $B\mathcal{S}cl(A) \subseteq U$ whenever $A \subseteq U$ and U is Bsg-open *set of X. The complement of B*Ψ*-closed set is called B*Ψ*-open.*

Definition 3.2. A subset A of a space $(X, \tau(B))$ is called B-generalized semi-preclosed (briefly Bgsp-closed) set if $B\beta cl(A)$ ⊆ U whenever $A \subseteq U$ and U is B-open set of X.

Definition 3.3. *A subset A of a space* $(X, \tau(B))$ *is called pre-B-semi-closed set if Bβcl(A)* ⊂ *U whenever* $A ⊂ U$ *and U is B-g-open set of X. The complement of pre-B-semi-closed set is called pre-B-semi-open.*

Definition 3.4. *A function* $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ *is called*

- (1). perfectly B-continuous if $f^{-1}(V)$ is B-clopen in X for every B-open set V of Y.
- (2). B-RC-continuous if $f^{-1}(V)$ is B-regular open in X for every B-open set V of Y.
- (3). contra-B-continuous if $f^{-1}(V)$ is B-closed in X for every B-open set V of Y.
- (4). contra-B-pre continuous if $f^{-1}(V)$ is B-preclosed in X for every B-open set V of Y.
- (5). contra-B-semi-continuous if $f^{-1}(V)$ is B-semi-closed in X for every B-open set V of Y.
- (6). contra-B- α -continuous if $f^{-1}(V)$ is B- α -closed in X for every B-open set V of Y.
- (7). contra-B-β-continuous if $f^{-1}(V)$ is B-β-closed in X for every B-open set V of Y.
- (8). contra-B- Ψ -continuous if $f^{-1}(V)$ is B Ψ -closed in X for every B-open set V of Y.

Definition 3.5. *A simply extended topological space* $(X, \tau(B))$ *is called*

- *(1). Bsemi-*T⁰ *space if to each pair of distinct points x,y of X, there exist a B-semi-open set containing one but not the other.*
- *(2). Bsemi-generalized-*T0*(briefly Bsg-*T⁰ *space if to each pair of distinct points x,y of X, there exist a Bsg-open set containing one but not the other.*

Definition 3.6. *A simply extended topological space* $(X, \tau(B))$ *is called*

- (1). pre-Bsemi- $T_{1/2}$ space if every pre-B-semi-closed set in it is B- β -closed.
- *(2). pre-Bsemi-*T^b *space if every pre-B-semi-closed set in it is B-semi-closed.*
- *(3). pre-Bsemi-*T³/⁴ *space if every pre-B-semi-closed set in it is B-pre-closed.*
- *(4). Bsemi-pre-*T¹/² *space if every Bgsp-closed set in it is B-*β*-closed.*
- Theorem 3.7. *Every B-*β*-closed set is a pre-B-semi-closed set.*

Proof. Follows from the fact that $B\beta cl(A)=A$ for any B- β -closed set.

The following Example shows that the implication in the above Theorem is not reversible.

Example 3.8. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}\$ and $B = \{a, c\}.$ Then the sets in $\{\phi, X, \{a\}, \{a, c\}\}\$ are called *B-open. Let A =* {*a, b*}*. Then A is a pre-B-semi-closed set but not a B-*β*-closed set.*

 \Box

Thus the class of pre-B-semi-closed sets properly contains the class of $B-\beta$ -closed sets.

Remark 3.9. *Union of two pre-B-semi-closed sets need not be pre-B-semi-closed. Let* $X = \{a, b, c\}$, $\tau = \{\phi, X\}$ *and* $B = \{a, b\}$. Then the sets in $\{\phi, X, \{a, b\}\}\$ are called B-open. Let $A = \{a\}$ and $C = \{b\}$. Then A and C are pre-B-semi-closed *sets.* But $A \cup B = \{a, b\}$ *is not a pre-B-semi-closed set.*

Theorem 3.10. *If A is a pre-B-semi-closed set of* $(X, \tau(B))$ *, then B* $\beta c l(A)$ *−A does not contain any non-empty B-g-closed set.*

Proof. Let F be a B-g-closed set of $(X, \tau(B))$ such that $F \subseteq B\beta cl(A)-A$. Then $A \subseteq X-F$. Since A is pre-B-semi-closed and $X - F$ is B-g-open, then $B\beta cl(A) \subseteq X - F$. This implies $F \subseteq X - B\beta cl(A)$. So $F \subseteq (X - B\beta cl(A)) \cap (B\beta cl(A) - A) \subseteq$ $X - B\beta$ cl(A)∩ B β cl(A)= ϕ . Thus F= ϕ . \Box

Result 3.11.

(1). Every B-open set is B-g-open set but not conversely.

*(2). Every B-preclosed set is B-*β*-closed set but not conversely.*

Proposition 3.12. *Every pre-B-semi-closed set is Bgsp-closed set but not conversely.*

The converse of the above Proposition is not true in general as can be seen from the following Example.

Example 3.13. Let $X = \{a, b, c\}$, $\tau = \{\phi, X\}$ and $B = \{b\}$. Then the sets in $\{\phi, X, \{b\}\}$ are B-open. Then $\{a, b\}$ is *Bgsp-closed but not pre-B-semi-closed set.*

Theorem 3.14. *Every B-semi-pre-* $T_{1/2}$ *space is a pre-B-semi-* $T_{1/2}$ *space.*

The converse of the above Theorem is not true in general as can be seen from the following Example.

Example 3.15. Let $X = \{a, b, c\}$, $\tau = \{\phi, X\}$ and $B = \{a\}$ then $\tau(B) = \{\phi, X, \{a\}\}\$. Then X is a B-semi-pre- $T_{1/2}$ space *since* $\{a, b\}$ *is a Bgsp-closed set but not a B-*β-closed in X. However X is a pre-B-semi- $T_{1/2}$ space.

Thus the class of pre-B-semi- $T_{1/2}$ space properly contains the class of Bsemi-pre- $T_{1/2}$ space.

Lemma 3.16. *For a subset A of a space X, the following are equivalent.*

- *(1). A is regular B-closed;*
- *(2). A is B-preclosed and B-semi-open;*
- *(3). A is B-*α*-closed and B-*β*-open.*

Proof.

(1)⇒(2) Let A be regular B-closed. Then A= Bcl(Bint(A)). Since every regular B-closed is B-closed and hence B-preclosed, A is B-preclosed and B-semi-open.

 $(2) \Rightarrow (3)$ Let A be B-preclosed and B-semi-open. Then Bcl(Bint(A)) ⊂ A and A ⊂ Bcl(Bint(A)). Therefore, we have $Bcl(Bint(Bcl(A)))\subset Bcl(Bint(Bcl(Bint(A)))) = Bcl(Bint(A))\subset A$. This shows that A is $B-\alpha$ -closed. Since $BSO(X)\subset B\beta O(X)$, it is obvious that A is $B-\beta$ -open.

(3)⇒(1) Let A be B- α -closed and B- β -open. Then $A = Bcl(Bint(Bcl(A)))$ and hence $Bel(Bint(A)) =$ $Bcl(Bint(Bcl(Bint(Bcl(A)))) = Bcl(Bint(Bcl(A))) = A$. Therefore A is regular B-closed. \Box As a consequence of the above Lemma, we have the following Result.

Theorem 3.17. *The following statements are equivalent for a function f:* $X \rightarrow Y$:

(1). f is B-RC-continuous;

(2). f is a contra-B-pre-continuous and B-semi-continuous;

*(3). f is contra-B-*α*-continuous and B-*β*-continuous.*

Theorem 3.18. *For a set* $A \subseteq (X, \tau(B))$ *the following conditions are equivalent:*

- *(1). A is B-clopen;*
- *(2). A is B-*α*-open and B-closed;*
- *(3). A is B-preopen and B-closed.*

Proof.

(1)⇒(2) and (2)⇒(3) are obvious from the fact that every B-open set is B- α -open and hence B-preopen.

 $(3) \Rightarrow (1)$ Since A is B-preopen, then $A \subseteq \text{Bint}(\text{Bcl}(A))$. Since A is B-closed, then $A \subseteq \text{Bint}(\text{Bcl}(A)) = \text{Bint}(A)$ or equivalently A is B-open and hence B-clopen. \Box

As a consequences of the above decompositions of B-clopen sets we have the following decomposition of perfect B-continuity.

Theorem 3.19. For a function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ the following conditions are equivalent:

- *(1). f is perfectly B-continuous;*
- *(2). f is B-continuous and contra-B-continuous;*
- *(3). f is B-*α*-continuous and contra-B-continuous;*
- *(4). f is B-pre-continuous and contra-B-continuous.*

Theorem 3.20. *The following statements are equivalent for a function f:* $X \rightarrow Y$:

- *(1). f is contra-B-*α*-continuous;*
- *(2). f is a contra-B-pre-continuous and contra-B-semi-continuous.*

Proof. It follows from the fact that $B\alpha O(X)=BSO(X)\cap BPO(X)$.

Proposition 3.21. *Every B-semi-open set is B*ψ*-open.*

The converse of the above Proposition is not true in general as can be seen from the following Example.

Example 3.22. Let $X = \{a, b, c\}$, $\tau = \{\phi, X\}$ and $B = \{a, b\}$. Then the sets in $\{\phi, X, \{a, b\}\}$ are called B-open. Here {*a*} *is B*ψ*-open set but not B-semi-open set.*

Definition 3.23. A space X is called $B\psi$ -T₀ if and only if to each pair of distinct points x,y of X, there exists a $B\psi$ -open *set containing one but not the other.*

Theorem 3.24. *Every Bsemi-T*₀ *space is B* ψ *-T*₀ *space.*

Proposition 3.25. *Every B*ψ*-open set is Bsg-open set.*

The converse of the above Proposition is not true in general as can be seen from the following Example.

Example 3.26. *Let* $X = \{a, b, c\}$, $\tau = \{\phi, X, \{b\}\}$ *and* $B = \{a, c\}$. Then the sets in $\{\phi, X, \{b\}$, $\{a, c\}$ *are called B-open. Then* {*a*} *is Bsg-open but not B*ψ*-open set.*

Theorem 3.27. *Every B-closed (resp. B-*α*-closed, B-semi-closed, B-preclosed and Bsg-closed) set is pre-B-semi-closed set but the converses are not true.*

Proof. Follows from the above Example [3.8](#page-2-0) and the fact that every B-closed (resp. B-α-closed, B-semi-closed, B-preclosed and Bsg-closed) set is B-α-closed (resp. B-semi-closed, B-β-closed, B-β-closed and B-β-closed) set. Thus the class of pre-B-semi-closed sets properly contain the classes of B-closed sets, B-α-closed sets, B-semi-closed sets and Bsg-closed sets. \Box

Theorem 3.28. *If A is B-g-open and pre-B-semi-closed, then A is B-*β*-closed.*

Theorem 3.29. *If A is pre-B-semi-closed set of* $(X, \tau(B))$ *such that* $A \subseteq C \subseteq B\beta cl(A)$ *, then C is also a pre-B-semi-closed set of* $(X, \tau(B))$ *.*

Proof. Let U be a Bg-open set of $(X, \tau(B))$ such that $B \subseteq U$. Then $A \subseteq U$. Since A is pre-B-semi-closed, $B\beta cl(A) \subseteq U$. Now, $B\beta cl(C) \subseteq B\beta cl(B\beta cl(A)) = B\beta cl(A) \subseteq U$. Therefore B is also a pre-B-semi-closed set. \Box

Definition 3.30. *A subset A of simply extended topological space X is said to be B-nowhere dense if* $Bint(BcI(A)) = \phi$ *.*

Theorem 3.31. *For a space* $(X, \tau(B))$ *the following are equivalent:*

(1). X is a pre-B-semi- $T_{1/2}$ space.

*(2). Every singleton of X is B-g-closed or B-*β*-open.*

Proof.

(1)⇒(2) Suppose that $\{x\}$ is not B-g-closed for some $x \in X$. Then $X - \{x\}$ is not B-g-open. So X is the only B-g-open set containing $X - \{x\}$ and hence $X - \{x\}$ is trivially a pre-B-semi-closed set of $(X, \tau(B))$. By (1), $X - \{x\}$ is B-β-closed set or equivalently $\{x\}$ is B- β -open.

(2)⇒(1) Suppose that $\{x\}$ is not B-preopen for some $x \in X$. Since every singleton is either B-preopen or B-nowhere dense, ${x}$ is a B-nowhere dense. Hence ${x} \notin \text{Bcl}(\text{Bint}(\text{Bcl}(\{x\}))) = \phi$. Therefore ${x}$ is not B- β -open. By (2), ${x}$ is a B-g-closed set of $(X, \tau(B))$. \Box

Theorem 3.32. *If* $(X, \tau(B))$ *is a pre-B-semi-T_b space, then for each* $x \in X$, $\{x\}$ *is either B-g-closed or B-semi-open.*

Proof. Suppose that $\{x\}$ is not a B-g-closed set of pre-B-semi-T_b space $(X, \tau(B))$. Then X is the only B-g-open set containing $X - \{x\}$ and hence $X - \{x\}$ is a pre-B-semi-closed set. Since $(X, \tau(B))$ is a pre-B-semi-T_b space, $X - \{x\}$ is B-semi-closed or equivalently $\{x\}$ is B-semi-open. \Box

4. Contra-pre-B-semi-continuous Functions

Definition 4.1. *A function* $f : (X, \tau(B_X)) \rightarrow (Y, \sigma(B_Y))$ *is called contra-pre-B-semi-continuous if* $f^{-1}(V)$ *is pre-B-semi-closed in X, for every B-open set V of Y.*

Theorem 4.2. *Every contra-B-*β*-continuous function is contra-pre-B-semi-continuous.*

Proof. It follows from the fact that every $B-\beta$ -closed set is pre-B-semi-closed.

Example 4.3. *A contra-pre-B-semi-continuous function need not be contra-B-β-continuous. Let* $X = Y = \{a, b, c\}$, $\tau = {\phi, X, \{a\}}$ and $B_X = {a, c}$. Then the sets in ${\phi, X, \{a\}, \{a, c\}}$ are called B_X -open. Let $\sigma = {\phi, Y}$ and $B_Y = {a}$. *Then the sets in* $\{\phi, Y, \{a\}\}\$ *are called* B_Y -open. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be defined by $f(a)=a$, $f(b)=a$ and *f(c)=b. Then f is contra-pre-B-semi-continuous but not contra-B*β*-continuous. Then f is contra-pre-B-semi-continuous but not contra-B*β*-continuous. Thus the class of contra-pre-B-semi-continuous functions properly contain the class of contra-B*β*-continuous functions.*

Theorem 4.4. *Every contra-B-pre continuous function is contra-pre-B-semi-continuous.*

Proof. It follows from the fact that every B-preclosed set is pre-B-semi-closed.

Example 4.5. A contra-pre-B-semi-continuous function need not be contra-B-pre continuous. Let $X=Y=\{a, b, c\}$, $\tau =$ $\{\phi, X, \{a\}\}\$ and $B_X = \{b\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}\$ are called B_X -open. Let $\sigma = \{\phi, Y\}$ and $B_Y = \{a\}$. Then *the sets in* $\{\phi, Y, \{a\}\}\$ are called B_Y -open. Let $g: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be defined by $g(a)=a$, $g(b)=b$ and $g(c)=c$. Then *g is contra-pre-B-semi-continuous but not contra-B-precontinuous. Thus the class of contra-pre-B-semi-continuous functions properly contain the class of contra-B-pre continuous functions. Thus we have the following diagram for the functions we defined:*

In the above diagram, $A \rightarrow B$ denotes A implies B but not conversely.

Example 4.6. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{c\}\}\$ and $B_X = \{b, c\}$ then $\tau(B_X) = \{\phi, X, \{c\}, \{b, c\}\}\$. Let σ $=\{\phi, Y\}$ *and* $B_Y = \{a\}$ *then* $\sigma(B_Y) = \{\phi, Y, \{a\}\}\$ *. Let* $f: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ *be an identity map. Then* f *is contra-B-continuous but not perfectly B-continuous.*

Example 4.7. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{b\}, \{b, c\}\}\$ and $B_X = \{c\}$ then $\tau(B_X) = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}\$. Let $\sigma = {\phi, Y}$ and $B_Y = {a, b}$ then $\sigma(B_Y) = {\phi, Y, {a, b}}$. Let $f: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f *is B-RC-continuous but not perfectly B-continuous.*

 \Box

Example 4.8. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{c\}\}\$ and $B_X = \{b, c\}$ then $\tau(B_X) = \{\phi, X, \{c\}, \{b, c\}\}\$. Let σ $=\{\phi, Y\}$ *and* $B_Y = \{a\}$ *then* $\sigma(B_Y) = \{\phi, Y, \{a\}\}\$ *. Let* $f: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ *be an identity map. Then* f *is contra-B-continuous but not B-RC-continuous.*

Example 4.9. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{c\}\}\$ and $B_X = \{a\}$ then $\tau(B_X) = \{\phi, X, \{a\}, \{a, c\}\}\$. Let $\sigma =$ $\{\phi, Y\}$ and $B_Y = \{c\}$ then $\sigma(B_Y) = \{\phi, Y, \{c\}\}\$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is *contra-B-*α*-continuous but not contra-B-continuous.*

Example 4.10. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{c\}\}$ and $B_X = \{a\}$ then $\tau(B_X) = \{\phi, X, \{a\}, \{a, c\}\}$. Let σ $=\{\phi, Y\}$ *and* $B_Y = \{c\}$ *then* $\sigma(B_Y) = \{\phi, Y, \{c\}\}\$ *. Let* $f: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ *be an identity map. Then* f *is contra-B-semi-continuous but not B-RC-continuous.*

Example 4.11. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}\$ and $B_X = \{b\}$ then $\tau(B_X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\$. *Let* $\sigma = {\phi, Y}$ *and* $B_Y = {b}$ *then* $\sigma(B_Y) = {\phi, Y, \{b\}}$ *. Let* $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ *be an identity map. Then* f *is contra-B-semi-continuous but not contra-B-*α*-continuous.*

Example 4.12. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}\$ and $B_X = \{b, c\}\$ then $\tau(B_X) = \{\phi, X, \{a\}, \{b, c\}\}\$. Let σ $=\{\phi, Y\}$ *and* $B_Y = \{c\}$ *then* $\sigma(B_Y) = \{\phi, Y, \{c\}\}\$ *. Let* $f: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ *be an identity map. Then* f *is contra-B-pre-continuous but not contra-B-*α*-continuous.*

Example 4.13. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $B_X = \{b\}$ then $\tau(B_X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}.$ *Let* $\sigma = {\phi, Y}$ *and* $B_Y = {\alpha}$ *then* $\sigma(B_Y) = {\phi, Y, \{a\}}$ *. Let* $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ *be an identity map. Then* f *is contra-B-*β*-continuous but not contra-B-pre-continuous.*

Example 4.14. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X\}$ and $B_X = \{a, b\}$ then $\tau(B_X) = \{\phi, X, \{a, b\}\}$. Let $\sigma = \{\phi, \phi\}$. *Y*} *and* $B_Y = \{a, c\}$ *then* $\sigma(B_Y) = \{\phi, Y, \{a, c\}\}\$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is *contra-pre-B-semi-continuous but not contra-B-pre-continuous.*

Example 4.15. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X\}$ and $B_X = \{a, b\}$ then $\tau(B_X) = \{\phi, X, \{a, b\}\}$. Let $\sigma = \{\phi, \phi\}$ *Y*} and $B_Y = \{a, c\}$ then $\sigma(B_Y) = \{\phi, Y, \{a, c\}\}\$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is *contra-pre-B-semi-continuous but not contra-B-*β*-continuous.*

Example 4.16. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X\}$ and $B_X = \{a, b\}$ then $\tau(B_X) = \{\phi, X, \{a, b\}\}$. Let $\sigma = \{\phi, A, \{a, b\}\}$. *Y*} *and* $B_Y = \{a, c\}$ *then* $\sigma(B_Y) = \{\phi, Y, \{a, c\}\}\$. Let $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is *contra-B-*ψ*-continuous but not contra-B-semi-continuous.*

Example 4.17. Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, X\}$ and $B_X = \{a, b\}$ then $\tau(B_X) = \{\phi, X, \{a, b\}\}$. Let $\sigma = \{\phi, Y\}$ and B_Y $= \{b\}$ *then* $\sigma(B_Y) = \{\phi, Y, \{b\}\}\$ *. Let* $f: (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ be an identity map. Then f is contra-B- β -continuous *but not contra-B-*ψ*-continuous.*

Definition 4.18. *A space* $(X, \tau(B))$ *is called pre-B-semi-locally indiscrete if every pre-B-semi-open set in it is B-closed.*

Example 4.19. Let $X = \{a, b\}$, $\tau = \{\phi, X, \{a\} \text{ and } B = \{b\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}\}$ are called B-open. Then *the sets in* {φ, X, {a}, {b}} *are called B-closed. Then the sets in* {φ, X, {a}, {b}} *are called pre-B-semi-open sets. Therefore* $(X, \tau(B))$ *is a pre-B-semi-locally indiscrete space. The space* $(X, \tau(B))$ *in Example* [4.5](#page-6-0) *is not a pre-B-semi-locally indiscrete space since* {*a*} *is a pre-B-semi-open set but it not B-closed.*

Theorem 4.20. If a function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is pre-B-semi-continuous and $(X, \tau(B_X))$ is a *pre-B-semi-locally indiscrete, then f is contra-B-continuous.*

Proof. Let V be an B_Y -open. Then $f^{-1}(V)$ is pre-B-semi-open in X, since f is pre-B-semi-continuous. Since $(X, \tau(B_X))$ is pre-B-semi-locally indiscrete, $f^{-1}(V)$ is B_X -closed. Therefore f is contra-B-continuous. \Box

Theorem 4.21. If a function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is contra-pre-B-semi-continuous and $(X, \tau(B_X))$ is a $pre-B-semi-T_{1/2}$ *space, then f is contra-B-* β *-continuous.*

Proof. Let V be an B_Y -open. Then $f^{-1}(V)$ is pre-B-semi-closed in X, since f is contra-pre-B-semi-continuous. Since $(X, \tau(B_X))$ is pre-B-semi- $T_{1/2}, f^{-1}(V)$ is B- β -closed in X. Therefore f is contra-B- β -continuous. \Box

Theorem 4.22. If a function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is contra-pre-B-semi-continuous and $(X, \tau(B_X))$ is a *pre-B-semi-*T^b *space, then f is contra-B-semi-continuous.*

Proof. Let V be an B_Y -open set. Then $f^{-1}(V)$ is pre-B-semi-closed in X, since f is contra-pre-B-semi-continuous. Since $(X, \tau(B_X))$ is pre-B-semi- T_b , $f^{-1}(V)$ is B-semi-closed in X. Therefore f is contra-B-semi-continuous. \Box

Theorem 4.23. If a function $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$ is contra-pre-B-semi-continuous and $(X, \tau(B_X))$ is a *pre-B-semi-*T³/⁴ *space, then f is contra-B-pre continuous.*

Proof. Let V be an B_Y -open. Then $f^{-1}(V)$ is pre-B-semi-closed in X, since f is contra-pre-B-semi-continuous. Since $(X, \tau(B_X))$ is pre-B-semi- $T_{3/4}$, $f^{-1}(V)$ is B-preclosed in X. Therefore f is contra-B-pre continuous. \Box

References

- [2] J.Dontchev, *Contra-continuous functions and strongly S-closed spaces*, Internat. J. Math. Math. Sci., 19(2)(1996), 303-310.
- [3] J.Dontchev and T.Noiri, *Contra semi-continuous functions*, Math. Pannon, 10(2)(1999), 159-168.
- [4] S.Jafari and T.Noiri, *On contra-precontinuous functions*, Bull. Malays. Math. Sci. Soc., (2)25(2)(2002), 115-128.
- [5] S.Jafari and T.Noiri, *Contra* α*-continuous functions between topological spaces*, Iran. J. Sci., 2(2)(2001), 153-167.
- [6] N.Levine, *Simple extension of topologies*, Amer. Math. Monthly, 71(1964), 22-25.
- [7] M.Murugalingam, O.Ravi and S.Nagarani, *New generalized continuous functions*, International Journal of Mathematics And its Applications, 3(3B)(2015), 5562.
- [8] O.Ravi, M.Murugalingam and S.Nagarani, *On Decompositions of continuity in simply extended topological spaces*, (submitted).
- [9] A.Vadivel, R.Vijayalakshmi and D.Krishnaswamy, *B-Generalized regular and B-generalized normal spaces*, International Mathematical Forum, 5(54)(2010), 2699-2706.
- [10] M.K.R.S.Veera Kumar, *Between semi-closed sets and semi-pre-closed sets*, Rend. Istit. Mat. Univ. Trieste., 32(1-2)(2000), 25-41.
- [11] M.K.R.S.Veera Kumar, *Pre-semi-closed sets*, Indian J. Math., 44(2)(2002), 165-181.
- [12] M.K.R.S.Veera Kumar, *Contra-*ψ*-continuous functions*, preprint.
- [13] M.K.R.S.Veera Kumar, *Contra-Pre-semi-continuous functions*, Bull. Malays. Math. Sci. Soc., (2)28(1)(2005), 67-71.

^[1] M.E.Abd El-Monsef, A.M.Kozae and R.A.Abu-Gdairi, *New approaches for generalized continuous functions*, Int. Journal of Math. Analysis, 4(27)(2010), 1329-1339.